期刊文献+

基于粒子群算法的海上风机叶片优化算法研究 被引量:2

An optimization method for offshore wind turbine blades based on PSO
下载PDF
导出
摘要 提出了一种针对不同风场条件提高海上风力发电机叶片气动效率的方法。风力发电机叶片是风机效率的核心部件,叶片在不同海上风场条件下功率差别很大,这导致了风机效率的降低。通过引入改进粒子群优化算法(PSO),基于修正动量叶素理论(BEM),对叶片沿展向的弦长分布和扭转角进行针对特定风场条件的气动优化。以美国再生能源实验室提供的5MW海上风机叶片作为算例,结合我国东海风场条件,叶片优化后平均功率提高了6.7%,取得了理想效果。结果表明,该优化方法具有较高的气动优化效率。 An optimization method for offshore wind turbine blades based on particle swarm optimization(PSO)is presented.The blades are the core component of the wind turbine,and the power of the blade varies significantly in different sea conditions which leads to the reduction in the efficiency of wind turbine blades.Improved particle swarm optimization is introduced in this paper,and the power of the blade calculated by the corrected blade element momentum theory(BEM)is defined as the fitness function.The chord length and the twist angle distribution along the span wise of the blade are optimized in specific wind conditions to improve aerodynamic efficiency.Finally,the 5MW offshore wind turbine blades provided by the United States Renewable Energy Laboratory is optimized according to the wind conditions in East China Sea,and the average power of the optimized blade is increased by 6.7%.The result shows that the method is efficient in aerodynamic design of wind turbine blades.
出处 《空气动力学学报》 CSCD 北大核心 2013年第4期498-502,共5页 Acta Aerodynamica Sinica
基金 上海市科委科研计划项目(10521100403)
关键词 粒子群算法 动量叶素理论 风机叶片 叶片优化 PSO BEM wind turbine blade blade optimization
  • 相关文献

参考文献11

  • 1MARTIN O L, HanserL Aerodynamics of wind turbines. rotors, loads and structures[M]. New York: James James, 2000.
  • 2LEE J, HAJELA P. Parallel genetic algorithm imple- mentation in multidisciplinary rotor blade design[J]. Journal of Aircraft, 1996, 33(5) : 962-969.
  • 3CROSSLEY W A, WELLS V L, LAANANEN D H. The potential of genetic algorithms for conceptual design of rotor systems[J]. Engineering Optimization, 1925, 24(3): 221-238.
  • 4JUAN M, DAVID G. Wind blade chord and twist angle optimization by using genetic algorithms[A]. Proceed- ings of the Fifth International Conference on Engineering Computational Technology[C], Stirlingshire, UK: Civ- ibComp Press, 2006.
  • 5GANGULI R. Survey of recent developments in rotor- craft design optimization [J]. Journal of Aircraft, 2004, 41(3): 493-510.
  • 6RUSSELL C E, SHI Y J. Particle swarm optimization: developments, applications and resources[R]. IEEE 2001.
  • 7杨从新,吕小静,童刚.基于粒子群算法的大型风力机桨距调节计算[J].空气动力学学报,2012,30(3):318-321. 被引量:1
  • 8KENNEDY J, EBERHART J. PSO optimization[A]. Proc. IEEE Int. Conf. [C]. Neural networks, 1995, 6: 1941-1945.
  • 9BURTON T, et al. Wind energy handbook[M]. New York: John Wiley & Sons Ltd, 2001.
  • 10JONKMAN J, et al. Definition of a 5MW reference wind turbine for offshore system development [R]. NREL, 2009.

二级参考文献6

  • 1汪定伟,王俊伟,王洪峰,等.智能优化方法[M].北京:高等教育出版社,2006.
  • 2GOURIERES D L. Wind power plants: theory and de sign[M]. NewYork: Pergamon Press, 1982.
  • 3CHENG Z X, YE Z Q, CHEN J Y, et al. Aerodynamic optimization for the rotor of horizontal-axis wind machine [A]. Proceedings of the International Conference on New and Renewable Energy[C]. Beijing, 1990.
  • 4BURTON T, SHARPE D, JENKINS N, et al. Wind en- ergy handbook[M]. Chichester: John Wiley &. Sons, Ltd, 2001.
  • 5SPERA D A, et al. Wind turbine technology: fundamental concepts of wind turbine engineering[M]. New York: ASME Press 1994.
  • 6KRAMER R, ARCHER R. Modelling approaches for flow over a wind turbine blade [J]. Wind Engineering, 2004, 28(3): 311-323.

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部