期刊文献+

基于时频分析检测EEG中癫痫样棘/尖波的方法 被引量:6

AUTOMATIC DETECTION OF EPILEPTIFORM SPIKES IN EEG BASED ON TIME-FREQUENCY ANALYSIS
下载PDF
导出
摘要 提出了一种基于Choi-Williams分布检测EEG中癫痫样棘波/尖波的方法。该方法通过计算EEG信号的时频分布 ,得到一段信号在各个时刻上沿频率方向上的能量分布。这种能量分布相当于一种瞬时频谱 ,反映了EEG信号在局部时间范围里的波形特征。以一段EEG信号在各个时刻的瞬时频谱的平均作为这段脑电的背景信号频谱 ,通过计算每一时刻的瞬时频谱与背景信号频谱之间的频谱差 ,检测这段信号中的棘波/尖波。对临床EEG数据检测的结果表明 ,这种方法能够有效地从复杂的背景EEG信号中检出棘波 ,有良好的应用前景。 A new method for detecting spikes in the EEG based on the time-frequency representation is presented. The EEG records are divided into epochs having duration of 5s, and then the time-frequency representation of a segment of the EEG signals is evaluated by using Choi-Williams distribution in order to be able to overcome the drawbacks of the cross-terms. We define the spectral components at any time instant in the time-frequency distribution of a signal as the signal's instantaneous spectrum. The mean values of all the instantaneous spectra in a segment of EEG signal are used to describe the background activity of the EEG over the epoch. The quantitative difference between the instantaneous spectrum at each instant and the mean instantaneous spectrum is called the spectral difference. Based on the experiments, we design a nonlinear transform for processing the spectral difference. Spikes are detected by the results of the transform of spectral difference. The results show that the new method works well.
出处 《生物物理学报》 CAS CSCD 北大核心 2000年第3期539-546,共8页 Acta Biophysica Sinica
关键词 时频分析 脑电图 癫痫 自动检测 Time-frequency analysis EEG Epilepsy Automatic detection
  • 相关文献

参考文献2

  • 1Qu H,Electroencephalography Clinical Neurophysiology,1993年,86卷,79页
  • 2Liu A,Electroencephalography Clinical Neurophysiology,1992年,82卷,30页

同被引文献56

  • 1林相波,邱天爽,李小兵,王静.基于小波变换的癫痫发作前脑电特征分析[J].信号处理,2003,19(z1):328-331. 被引量:1
  • 2李莹,欧阳楷.自动检测儿童脑电中癫痫波的方法研究[J].中国生物医学工程学报,2005,24(5):541-545. 被引量:6
  • 3李小兵,初孟,邱天爽,鲍海平.一种基于时频分析的癫痫脑电棘波检测方法[J].中国生物医学工程学报,2006,25(6):678-682. 被引量:4
  • 4谭郁玲.临床脑电图与脑电地形图学[M].北京:人民卫生出版社,2001..
  • 5Vapnik V. Translated by Kotz S. Estimation of dependences based on empirical data. New York: Springer-Verlag, 1982.
  • 6Haykin S. Neural networks: a comprehensive foundation.Prentice Hall, Tsinghua University Press, 2001.
  • 7VapnikV(著) 张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Scholkopf B, Sung KK, Burges JC, Girosi F, Niyogi P, Poggio T, Vapnik V. Compare support vector machine with gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 1997,45(11):2758-2765.
  • 9Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C,Smola A J, ed. Advances in kernel methods-support vector learning. Cambridge: MIT Press, 1999. 185-208.
  • 10Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clinical Neurophysiology, 2002,113(12):1873-1881.

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部