期刊文献+

基于非线性特征的音符识别算法的应用与研究 被引量:2

Application and Research on Algorithm of Music Notes Recognition Based on Nonlinear Parameter
下载PDF
导出
摘要 利用相空间重构方法提取音符音频中非线性特征参量,将部分参量作为训练集来构造支持向量机(SVM)分类器,另一部分作为测试集进行识别效果的检验,由于固定相空间重构参数后,将会导致部分音符信号的非线性信息丢失,从而降低识别准确率,因此将自适应信号分解和PCA的方法引入到信号预处理环节中,建立了相应的识别流程。 This paper presents a method for notes recognition by utilizing nonlinear parameter based on Reconstructed Phase Space technique. After extracting parameters from note signals, SVM classifier are developed using part of the nonlinear parameters and the rest are used as test data to check out the recognition efficiency. The result shows that the way of using fixed parameters will cause loss of nonlinear imformation, which lower the recognition accuracy. As the way of improvement, adaptive signal decomposition and PCA method are intro duced in the recognition process.
作者 刘婷
出处 《计算机与数字工程》 2013年第8期1246-1248,1387,共4页 Computer & Digital Engineering
关键词 音符识别 相空间重构 支持向量机 PCA EMD notes recognition reconstructed phase space SVM PCA EMD
  • 相关文献

参考文献10

  • 1J.Ye,M.T.Johnson,R.J.Povinelli.Phoneme classification over the reconstructed phase space using principal component analysis[C]//Proc.ISCA Tutorial and Research Workshop on Non-Linear Speech Processing(NOLISP),Le Croisic,France,2003:11-16.
  • 2陈亮,张雄伟.基于相空间重构实现非线性语音清浊音判决[J].通信学报,2003,24(6):16-22. 被引量:5
  • 3王妍,徐伟.Lorenz系统中时间序列的相空间重构方法与特性[J].振动工程学报,2006,19(2):277-282. 被引量:8
  • 4王振朝,赵宇茜,赵晨.在重构相空间选取样本的时间序列分形预测[J].计算机工程与应用,2011,47(21):126-129. 被引量:4
  • 5LIU Xinxia,HAN Fulian,WANG Jingui.Wavelet Extended EMD Noise Reduction Model for Signal Trend Extraction[C]//CISP' 09.2nd International Congress on Image and Signal Processing,2009:1-5.
  • 6D.Rouvre,D.Kouame,F.Tranquart,et al.Empirical mode decomposition(EMD) for multi-gate,multi transducer ultrasound Doppler fetal heart monitoring[C]//Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology,2005:208-212.
  • 7Wayo Puyati Walairacht.A.Efficiency Improvement for Unconstrained Face Recognition by Weightening Probability Values of Modular PCA and Wavelet PCA[C]//Advanced Communication Technology,2008.ICACT 2008.10th International Conference on,2008,2:1449-1453.
  • 8Lei Cao Jie,Li Yaoru Sun,Huaping,Zhu Chungang Yan.EEG-based vigilance analysis by using fisher score and PCA algorithm[C]//Progress in Informatics and Computing(PIC),2010 IEEE International Conference on,2010,1:175-179.
  • 9阮庆,王逸蔷.主成分分析方法在BP学习中的应用(英文)[J].复旦学报(自然科学版),2005,44(2):318-322. 被引量:3
  • 10刘颖,王成儒.基于PCA和KHM聚类的唇特征提取算法的研究[J].微电子学与计算机,2008,25(8):84-87. 被引量:1

二级参考文献56

共引文献16

同被引文献8

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部