摘要
针对电力系统稳定器优化配置的复杂非线性问题,将具有较好全局搜索能力和寻优速度的计算智能算法引入到电力系统低频振荡抑制中,充分利用遗传算法和粒子群优化算法的优点,提出一种混合算法,提高了寻优过程的收敛性和稳定性。混合算法被用于优化电力系统稳定器参数,进而提出基于混合算法的电力系统低频振荡控制方法。实验仿真和应用结果表明,混合算法具有快速收敛性、短的计算时间和较好的稳定性;同时混合算法优化的电力系统稳定器不仅可以克服低频振荡现象,而且还可以增强电力系统的暂态稳定性。
In the light of the complex nonlinear optimization problem of power system stabilizer, the better global search ability and convergence speed of computational intelligence algorithms are introduced to control the low frequency oscillation in power system. A hybrid algorithm based on using the advantages of genetic algorithm and particle swarm optimization is proposed in order to improve the optimization convergence and stability in this paper. The next, the hybrid algorithm is used to optimize the parameters of power system stabilizer. The control method of low frequency oscillation of power system based on hybrid algorithm is proposed to reduce the oscillation phenomena. Ex- periment simulation and application results show that the hybrid algorithm takes on fast convergence, short calculation time, and good stability and so on. At the same time, the optimization power system stabilizer can not only overcome the low frequency oscillation phenomena, but also can enhance the transient stability of power system.
出处
《计算机与数字工程》
2013年第8期1254-1256,1353,共4页
Computer & Digital Engineering
基金
国家自然科学基金项目(编号:60971016
61108086)
四川省教育厅自然科学重点项目(编号:11ZA168)
达州市重大科技攻关项目(编号:2010zdzx006)资助
关键词
电力系统稳定器
低频振荡
遗传算法
粒子群算法
参数优化
power system stabilizer
low frequency oscillation
genetic algorithm
particle swarm optimization
parameter optimization