期刊文献+

改进量子粒子群算法求解电力经济调度 被引量:1

Improved Quantum-behaved Particle Swarm Optimization for Power Economic Dispatch
下载PDF
导出
摘要 为了避免算法早熟,结合柯西分布具有较长两翼的特点,提出了带柯西扰动因子的量子粒子群,对平均位置扰动,并结合罚函数处理约束条件来求解电力系统经济调度问题。通过对15个机组的数值仿真表明,该算法在收敛精度和迭代速度上有较好的效果。 In order to avoid algorithm premature, the paper taken into account the Cauchy distribution has the characteristics of long wings, the quantum-behaved particle swarm optimization with Cauchy disturbances is introduced to perturb the average position. And then the paper Handle constraints with penalty functions to solve economic dispatch problem of power system. Then the paper apply this algorithm on the 15 units system, the experimental results indicated the algorithm has high speed, high accuracy and good convergence.
作者 张兰
出处 《计算机与数字工程》 2013年第8期1268-1269,1301,共3页 Computer & Digital Engineering
关键词 量子粒子群 经济调度 柯西扰动 quantum-behaved particle swarm optimization economic dispatch cauchy disturbance
  • 相关文献

参考文献10

  • 1LIN Wheimin,CHENG Fusheng,TSAY Mingtong.An improved tabu search for economic dispatch with multip leminima[J].IEEE Transactions on Power Systems,2002,17 (1):108-112.
  • 2PARK PA,KITAH,TANAKAE,et al.A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function[J].IEEE Transaction Power Systems,2002,17(2):411-416.
  • 3SUN Jun,XU FENG Bin,XU Wenbo.Particle swarm optimization with particles having quantum behavior[C]//proc of Congress on Evolutionary Computation,2004:325-331.
  • 4Sun J,Xu WB,Feng B.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of IEEE International Conference on Cybernetics and Intelligent Systems.Singapore:IEEE,2004:111-116.
  • 5Eberhart R,Kermendy J.A new optimizer using particle swarm theory[J].In:Proc of 6th Int'1 Symposium On Micro Machine and human Science Piscataway.NJ:IEEE Service Center,1995:39-43.
  • 6王战权,赵朝义,云庆夏.进化策略中基于柯西分布的变异算子改进探讨[J].系统工程,1999,17(4):49-54. 被引量:13
  • 7Chen Po-Hung,Chang Hong-Chan.Large-scale economic dispatch by genetic algorithm[J].IEEE Transactions on Power System,1995,10(4):1919-1926.
  • 8Gaing Zwe-Lee.Particle swarm optimiz-ation to solving the economic dispatch considering the generator constraints[J].IEEE Transactions on Power System,2003,18(3):1187-1195.
  • 9王道军,孙俊,须文波.量子粒子群算法在电力系统经济调度中的应用[J].计算机工程与设计,2008,29(19):5019-5021. 被引量:8
  • 10Chen Po-Hung,Chang Hong-Chan.Large-scale economic dispatch by genetic algorithm[J]. IEEE Transactions on Power System,1995,10(4):1919-1926.

二级参考文献16

  • 1侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100. 被引量:157
  • 2Yao X,Proc of the Fifth Annual Conference on Evolutionary Programming,1996年
  • 3WOOD A J, Wollenberg B F.Power generation, operation and control [M]. Beijing: Tsinghua University Press,2003.
  • 4Hartati R S. Active security constrained optimal power flow using modified hopfield neural network [D]. Halifax, Nova Scotia:Dalhouseie University, 2001.
  • 5Chao-Lung Chiang. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels[J].IEEE Transactions on Power System,2005,20(4):1690- 1699.
  • 6Abdul Rahman T K, Yasin Z M, Abdullah W N W.Artificial-immune-based for solving economic dispatch in power syste[C]. Proceedings of National Power and Energy Conference. Malaysia: IEEE,2004:31-35.
  • 7Perez-Guerrero R E, Cedefio-Maldonado J R.Differential evolution based economic environmental power dispatch[C]. Proceedings of the 37th Annual North American. Puerto Rico: IEEE,2005:191-197.
  • 8Leandro dos Santos Coelho, Viviana Cocco Mariani. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect[J]. IEEE Transactions on Power System, 2006,21 (2):989-996.
  • 9Gaing Zwe-Lee. Particle swarm optimization to solving the economic dispatch considering the generator constraints [J].IEEE Transactions on Power System,2003,18(3): 1187- 1195.
  • 10Pancholi R K, Swamp K S. Particle swarm optimization for security constrained economic dispatch[C].Proceedings of IEEE International Conference on Intelligent Sensing and Information Processing.Chennai,India:IEEE,2004:7-12.

共引文献19

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部