期刊文献+

快速反应制造对偶单元授权卡片交叠循环模型 被引量:3

A Modeling Approach to POLCA for Quick Response Manufacturing
下载PDF
导出
摘要 在快速反应制造基础上,将对偶单元授权卡片的交叠循环运作机制进行深入研究,改善Little定律中对生产时间、在制品数量等简单的"平均"划分方法,以生产成本与POLCA卡片数量的权重组合成本最小为目标,构建一个全新的非线性数学规划模型,研究对偶单元授权卡片的交叠循环生产系统中最重要的因素——POLCA卡片数量,确定多生产周期内POLCA卡片的全局最优数量,实现整个系统的高效运作。通过两种不同运作模式下的数值实验的求解结果,验证了该模型的合理与有效性,有助于管理者更精确、有效地控制整个生产系统,实现快速反应制造。 Based on the concept of quick response manufacturing (QRM), the operation mechanism of paired-cell overlapping loops of cards with authorization (POLCA) is analyzed. A fine division method of production periods is proposed to improve the average of the Little's Law for lead time and the number of work in process (WIP). Then a novel mathematical programming formulation is developed for the determination of the number of POLCA cards. By this model, it can minimize the production cost that is a weighted combination of the number of POLCA cards. The global optimal number of POLCA cards is found such that the system operates under high efficiency. By two examples, it shows that the model is reasonable and valid for two different operational modes. The proposed method is helpful for the mangers to accurately and effectively control the whole POLCA system for QRM.
出处 《工业工程》 北大核心 2013年第4期85-91,共7页 Industrial Engineering Journal
基金 国家自然科学基金面上资助项目(70972003) 国家自然科学基金重点资助项目(71031001) 教育部博士点基金资助项目(20111102110025) 航空科学基金资助项目(2011ZG51073)
关键词 多品种小批量 快速反应制造 对偶单元授权卡片的交叠循环 Little定律 quick response manufacturing (QRM) paired-cell overlapping loops of cards with authorization (POLCA) Little's law
  • 相关文献

参考文献19

  • 1Suri R. Quick response manufacturing: a companywide approach to reducing lead times [M]. Portland, OR: Productivity Press, 1998.
  • 2Suri R, Krishnamurthy A. How to plan and implement POL-CA: a material control system for high-variety or custom-engineered products [ R]. USA: Center for Quick Response Manufacturing, University of Wisconsin, Madison, WI, 2003.
  • 3Suri R. It's about time: the competitive advantage of quick response manufacturing [ M ]. Boca Raton, London. CRC Press, 2010.
  • 4Bitran G R, Chang L. A mathematical programming ap- proach to a deterministic kanban system [ J]. Management Science, 1987. 33(4) : 427-441.
  • 5Panayiotou C G, Cassandras C G. Optimization of kanban-based manufacturing systems [ J ]. Automatica, 1999, 35 (9) : 1521-1533.
  • 6Spearman M L, Woodruff D L, Hopp W J. CONWIP: a pull alternative to kanban [ J ]. International Journal of Production Research, 1990, 28 (5) : 879- 894.
  • 7Duenyas I, Hopp W J, Spearman M L. Characterizing the output pcocess of a CONWIP line with deterministic processing and random outages[ J]. Management Science, 1993, 39 (8) : 975-988.
  • 8Framinan J, Gonzalez P, Ruiz-Usano R. The CONWIP production control system: review and research issues[ J]. Production Planning and Control, 2003, 14(3) : 255-265.
  • 9Krishnamurthy A, Suri R. Planning and implementing POL- CA: a card-based control system for high variety or custom engineered products [ J ]. Production planning and control, 2009, 20(7) : 596-610.
  • 10Vakharia A, Moily J, Huang Y. Evaluating virtual cells and multistage flow shops : analytical approach [ J ]. International Journal of Flexible Manufacturing Systems, 1999, 11(3) :291-314.

同被引文献24

  • 1Safaei N, Saidi-Mehrabad M, Jabal-Ameli M S. A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system [ J ]. European Journal of Oper- ational Research, 2008, 185 (2) : 563-592.
  • 2Rheauh M, Drolet J, Ahdulnour G. Physically reconfigurahle virtual cells: a dynamic model for highly dynamically envi-ronment[ J ]. Computers and Industrial Engineering, 1995 (29) :221-225.
  • 3Selim H M, Askin R G, Vakharia A J. Cell formation in group technology : review, evaluation and directions for future research[ J ]. Computers and Industrial Engineering, 1998, 34( 1 ), 3-20.
  • 4Wicks E M, Reasor R J. Designing cellular manufacturing systems with dynamic part populations[ J ]. IIE transactions, 1999, 31(1) : 11-20.
  • 5Jayaswal S, Adilz G K. Efficient algorithm for cell formation with sequence data, machine replications and alternative process routings[ J]. International Journal of Production Re- search, 2004, 42(12): 2419-2433.
  • 6Jeon G, Leep H R. Forming part families by using genetic al- gorithm and designing machine cells under demand changes [ J ]. Computers & Operations Research, 2006, 33 ( 1 ) : 263-283.
  • 7Safaei N, Tavakkoli-Moghaddam R. Integrated multi-period cell formation and subcontracting production planning in dy- namic cellular manufacturing systems [ J ]. International Jour- nal of Production Economics, 2009, 120(2) : 301-314.
  • 8Kioon S A, Bulgak A A, Bektas T. Integrated cellular man- ufacturing systems design with production planning and dy- namic system reconfignration[ J]. European Journal of Oper- ational Research, 2009(192) :414-428.
  • 9Saxena L K, Jain P K. Dynamic cellular manufacturing sys- tems design-a comprehensive model [ J ]. The International Journal of Advanced Manufacturing Technology, 2011, 53 (1-4): 11-34.
  • 10Hossein Shirazi, Reza Kia, Nikbakhsh Javadian, et al. An archived multi-objective simulated annealing for a dynamic cellular manufacturing system[ J]. Journal of Industrial En- gineering International, 2014,10 ( 58 ) : 1-17.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部