期刊文献+

重选—磨细—酸浸联合工艺回收PCB中金属的研究

Study on Recycling Metal in PCB by Heavy Medium Selection—Selectivity Milling—Acid Lixiviating Process
下载PDF
导出
摘要 采用重介质分选选择性磨细酸浸联合工艺,利用磁铁矿重介质悬浮液,对粗碎后的PCB进行分选,再利用PCB中不同塑料可磨性的不同,将其进行选择性磨细,使PCB中所含金属成分与其他组分有效分离,采用酸浸工艺将各种金属成分转移到液相中,实现金属成分的高效回收。结果表明,在PCB的粒度小于等于2.5mm时,可使PCB中约55.26%的金属得到富集;86.08%的Au和89.21%的Ag被富集到磨细的粉末中,产品中的各种金属含量分别为:Au0.68kg/t,Ag0.91kg/t,Cu120.8kg/t,Al2.98kg/t,Sn28.02kg/t。当采用350mL浓H2SO4、浸出时间为8h,浸出温度为100℃条件下,对50g分选后的重组分进行酸浸时,可以使Au的回收率达到89.8%,Ag的回收率达到90.2%。与其他传统工艺相比,该工艺具有回收效率高、低污染、低能耗等特点,可以作为PCBs资源化的有效手段。 This paper used heavy medium selection-selectivity milling-acid lixiviating process to recycle metal in PCBs.It used magnetite as the heavy medium,selected PCB after the coarse fragmentation,selectivity milled the PCB according to the different milling characteristics to separate the metal from other component,then,by acid lixiviating to transfer the metal into liquid phase,recycled the metal efficiently.As a result,separate efficiency could reach 55.26% when the PCB′s granularity was less than or equal to 2.5 mm; 86.08% of Au,89.21% of Ag were enriched into the powder after the selectivity milling process,and the contents of metals in the powder were Au 0.68 kg/t,Ag 0.91 kg/t,Cu120.8 kg/t,Al2.98 kg/t and Sn28.02 kg/t,respectively.Under the conditions of oil of vitriol350 mL,lixiviated time 8 h,lixiviated temperature 100 ℃,the recycle ratios of Au and Ag in 50g selected heavier part were 89.8% and 90.2%,respectively.Compared with traditional processes,the heavy medium selection-selectivity milling-acid lixiviating process had the characteristics of high recycle ratio,low pollution,low energy consumption,etc.,which could realize PCBs reclamation.
作者 熊英禹
出处 《环境保护科学》 CAS 2013年第4期71-75,111,共6页 Environmental Protection Science
关键词 PCB 重介质分选 选择性磨细 酸浸 PCB Heavy Medium Selection Selectivity Milling Acid Lixiviating
  • 相关文献

参考文献12

  • 1R. Vetri Murugan, S.Bharat, Abhijit P.Deshpande, et al. Milling and separation of the multi-component printed circuit board materials and the analysis of elutriation based on a single particle model[J].PowderTeehonlogy, 2008, 2(I 83): 169-176.
  • 2Holliday R, Corti C, Goodman P.Gold the cost effective, recyelable electronic material [R/OL] [2006-01-15]. http://www. Gold, org/discover/sci_indu/presentations/.
  • 3温雪峰,范英宏,赵跃民,曹亦俊,柴晓兰,段晨龙,王海峰.用静电选的方法从废弃电路板中回收金属富集体的研究[J].环境工程,2004,22(2):78-80. 被引量:33
  • 4He F, Fu Q, Lu Y. Degilding of waste gilded electronic parts by bacterial leaehing[J].Min Met(China), 1987,1:26-30.
  • 5林种玉,周朝晖,吴剑鸣,薛茹,程琥,王琪,刘月英,傅锦坤.Pt^(4+)生物吸附作用的谱学表征[J].厦门大学学报(自然科学版),2003,42(5):612-616. 被引量:4
  • 6Wilson R J, Veasey T J,Squires D M. The application of mineral processing techniques for the recovery of metal from post-consumer wastes[J].Minerals Engineering, 1994,7(8):975 -984.
  • 7Cui J R, Forssberg E. Mcchanical recycling of waste electric and electronic equipment[J].Jounnal of Hazardous Materials, 2003,99(3): 243-263.
  • 8Zhang S L, Forssberg E. Optimization of electrodynamic separation for metals recovery from electronic scrap[J].Resourees, Conservation and Recycling. 1998,22(3/4): 143-162.
  • 9Barlow G. Bio-electroehemical technology for metal recovery from serap printed circuit boards[R/OL](2004)[2006-1-15].http://www.dti.gov.uk/ biowise.
  • 10K. Hartonen. S.Bowardt. S.B. Hawthorne. M.-L.Riekkolaj.[J]. Chramatogr. A,774(1997),229.

二级参考文献26

  • 1Kotrba P, Doleckova L, Lorenzo V D, et al. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal bindingpeptides[J].Appl.Environ.Microbiol., 1999,65(3).1092--1098.
  • 2Korenevskii A A. Khamidova K, Avakyan Z A. et ai.Silver biosorption by micromycetes[J]. Microbiology,1999, 68(2):139--145.
  • 3Brierley J A. Vance D B. Recovery of precious metals by microbial biomass[M]. UK: Chippenham, 1988.477--485.
  • 4Fourest E, Volesky B. Contribution of sulfonate groups and alginate to heavy metal biosorption by thedry biomass of sargassum fluitans[J]. Environ. Sci.Technol. , 1996, 30(1): 277--282.
  • 5Benton P M C, Christiansen J, Dean D R, et al. Stereospecificity of acetylene reduction catalyzed by Nitrogenase[J].J. Am. Chem. Soc., 2001, 123: 1 822--1 827.
  • 6Lloyd J R,Yong P, Macaskie L E. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria[J]. Appl. Environ. Microbiol., 1998, 64(11): 4 607--4 609.
  • 7Gardea-Torresdey J L, Tiemann K J, Armendariz V,et al. Characterization of Cr (Ⅵ) binding and reduction to Cr (Ⅲ) by the agricultural byproducts of Avena monida (Oat) biomass[J]. Journal of Hazardous Materials,2000, 80(1--3) : 175--188.
  • 8Liu Y Y,Fu J K, Zhou Z H, et al. Highly dispersive supported palladium catalyst prepared by microbial reduction[J]. Chem. J. Internet. ,2000,2 (3):13.
  • 9Greene B, Hosea M, Mcpherson R, et al. Interaction of gold (Ⅰ) and gold (Ⅲ) complexes with algal biomass[J].Environ. Sci. Technol., 1986,20 (6), 627--632.
  • 10Bellamy L J. The Infra-red spectra of complex molecules[M]. London: Chapman and Hall, 1978. 107--125, 184, 244--246.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部