期刊文献+

基于最小曲面距离的快速点云精简算法 被引量:5

Fast Scattered Point Cloud Data Reduction Algorithm Based on Minimum Curvature Distance
下载PDF
导出
摘要 提出了一种新的基于最小曲面距离的点云精简算法,算法在简化点云数据的同时不损失特征。点云被划分成一系列的三维子网格,根据子网格,找到最近k邻域。散乱点云的k邻域通过二次参数曲面拟合,进一步得到相关曲率。依据提出的曲面距离,对点云进行精简。选择了一些典型的点云,如冲浪、石头、陶俑、牙齿等数据对算法进行了验证。结果表明,可以直接和有效地减少点云数据,同时保持原始模型的几何形状,对点云精简研究有一定的理论和实践意义。通过实验也证明了该算法的可靠性和准确性。 To simplify the point cloud data while preserving features, a novel algorithm based on the curvature distance is put forward. The whole point cloud is divided into a series of initial sub-clusters with the 3D grid subdivision method, and then k neighborhood is constructed from the partition results. All the points in k neighborhood are approximated by quadratic parametric surface based on scattered point cloud parameterization. The curvatures of fitting surface are further calculated. The judgment of requiring reduction is decided by the novel minimal surface distance of curvature features. Some typical cases with various surface features, such as surf, stone, pottery figurine and tooth, are chosen to verify the new method. The results indicate that the new algorithm is of significance in theory and practice for reduction of point cloud, and enables to reduce data directly and efficiently while maintaining the geometry of the original model. The reliability and accuracy of the algorithm are also proved by experiment.
出处 《光电工程》 CAS CSCD 北大核心 2013年第8期59-63,共5页 Opto-Electronic Engineering
基金 中国民航飞行学院博士启动基金资助项目(J2009-45)
关键词 面型重建 点云精简 曲率 曲面距离 surface reconstruction cloud point reduction curvature curvature distance
  • 相关文献

参考文献13

  • 1Lee K H, Woo H, Suk T. Data reduction methods for reverse engineering [J]. The International Journal of Advanced Manufacturing Technology(S1433-3015), 2001, 17: 735-743.
  • 2Lee K H, Woo H, Suk T. Point data reduction using 3D grids [J]. The International Journal of Advanced Manufacturing Technology(S1433-3015), 2001, 18(3): 201-210.
  • 3Woo H, Kang E, Wang S. A new segmentation method for point cloud data [J]. International Journal of Machine Tools and Manufacture(S0890-6955), 2002, 42(2): 167-178.
  • 4Medellin H, Comey J, Davies J B. Algorithms for the physical rendering and assembly ofoctree models [J]. Computer-Aided Design(S0010-4485), 2006, 38(1): 69-85.
  • 5张丽艳,周儒荣,蔡炜斌,周来水.海量测量数据简化技术研究[J].计算机辅助设计与图形学学报,2001,13(11):1019-1023. 被引量:94
  • 6万军,鞠鲁粤.逆向工程中数据点云精简方法研究[J].上海大学学报(自然科学版),2004,10(1):26-29. 被引量:39
  • 7Ru wen Schnabel, Sebastian Moser, Reinhard Klein. Fast vector quantization for efficient rendering of compressed point- clouds [J]. Computers &Graphies(S0097-8493), 2008, 32: 246-259.
  • 8刘德平,陈建军.逆向工程中数据精简技术的研究[J].西安电子科技大学学报,2008,35(2):334-339. 被引量:21
  • 9周绿,林亨,钟约先,袁朝龙.曲面重构中测量点云精简方法的研究[J].中国制造业信息化(学术版),2004,33(5):102-104. 被引量:28
  • 10邓劲莲,杨家强,何国金.复杂曲面反向工程的数字化测量及数据处理的研究[J].中国制造业信息化(学术版),2003,32(2):85-87. 被引量:8

二级参考文献35

  • 1洪军,丁玉成,曹亮,武殿梁.逆向工程中的测量数据精简技术研究[J].西安交通大学学报,2004,38(7):661-664. 被引量:61
  • 2苑国英,陈祖安,周清芬.坐标测量机上建立测量坐标系的理论与方法[J].现代计量测试,1995,3(5):11-14. 被引量:4
  • 3苏旭.逆向工程中基于散乱数据点的曲面重构方法研究:硕士学位论文[M].南京:南京航空航天大学,2000..
  • 4[1]Varady Tamas, Martin Ralph R, Coxt Jordan. Reverse engineering of geometric models-an introduction[J]. CAD,1997, 29(4):255-268.
  • 5[2]Martin R R, Stroud I A, Mashall A D. Data reduction for reverse engineering[R]. RECCAD, Deliverable Document 1 COPERUNICUS project, no. 1068, Computer and automation Institute of Hungarian Academy of Science, January 1996.63-69.
  • 6[3]Chen Y H, Neg C T, Wang Y Z. Data reduction in integrated reverse engineering and rapid prototyping[J]. International Journal of Computer Integrated Manufacturing, 1999,12(2):97-103.
  • 7LEE K H, WOO H, SUK T. Point data reduction using 3D grids [J]. Advanced Manufacturing Technology, 2001,18: 201-210.
  • 8SONG H, FENG H Y. A global clustering approach to point cloud simplification with a specified data reduction ratio [J]. Computer-Aided Design, 2008,40: 281-292.
  • 9COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24 (5) :603-619.
  • 10FUKUNAGA K, HOSTETLER L. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Trans Info Theory, 1975,21:32-40.

共引文献230

同被引文献36

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部