期刊文献+

基于水平集的彩色图像分割方法 被引量:3

Level Set Based Color Image Segmentation
下载PDF
导出
摘要 实现了一种新的彩色图像融合分割方法。首先,通过对彩色图像进行YCbCr变换,提取其颜色特征。进一步,对亮度图像进行Gabor变换,提取其纹理特征。同时,为了消除特征向量的冗余,引入PCA变换对高维特征向量进行压缩。然后,采取向量C-V模型对提取的特征向量进行分割。最后,对分割图像进一步后处理,消除小的区域。真实彩色图像实验结果证明了方法的有效性。 A new method about color image segmentation is proposed.Firstly,the color image is transformed to YCbCr color space to extract color features,and the texture features are extracted from luminance image by using Gabor Filters.Moreover,PCA transform is used to eliminate the redundance of feature vector.Secondly,the vector C-V model is used to segment the feature vector.At last,a further processing is used to eliminat the small regions.Experimental results demonstrate the effectiveness of the method.
作者 陈小娟
出处 《科学技术与工程》 北大核心 2013年第23期6756-6759,6766,共5页 Science Technology and Engineering
关键词 彩色图像 图像分割 YCbCr变换 GABOR变换 水平集 color image image segmentation YCbCr transform gabor transform level set
  • 相关文献

参考文献10

  • 1Busin L, Vandenbroucke N, Macaire L. Color spaces and image seg- mentation. Advances in Imaging and Electron Physics, 2008; 151: 65-168.
  • 2Nimbarte N M, Mushrif M M. Multi-level thresholding algorithm for color image segmentation. International Conference on Computer En- gineering and Applications, 2010 ; 2:231-233.
  • 3Bhoyar K, Kakde O. Color image segmentation based on jnd color histogram. International Journal of Image Processing, 2010 ; 3 ( 6 ) : 283-292.
  • 4Bhogal A K, Singla N, Kaur M. Color image segmentation based on color and texture properties. International Journal of Advanced Engi- neering Sciences and Technologies, 2011 ;8(2 ) : 152-156.
  • 5Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl Math, 1989 ;42:577-685.
  • 6Chan T, Vese L. Active contours without edges. IEEE Transaction on Image Processing, 2001 ; 10 ( 2 ) : 266-277.
  • 7张开华,周文罡,张振,郑孝娟.一种改进的C-V主动轮廓模型[J].光电工程,2008,35(12):112-116. 被引量:29
  • 8Sandberg B, Chan T, Vese L. A level set and gabor based active contour algorithm for segmenting textured images. UCLA CAM Re- port, 2002:02-39.
  • 9Chen Sagiv, Sochen N A, Zeevi Y Y. Integrated active contours for texture segmentation. IEEE Transactions on Image Processing, 2006 ; 15(6) :1633-1646.
  • 10Li C, Xu C, Gui C, et al. Level set evolution without re-initional- ization : a new variational formulation. IEEE Conference on Comput- er Vision and Pattern Recognition, 2005 ; 1 ( 1 ) : 430-436.

二级参考文献10

  • 1闵莉,李小毛,唐延东.一种改进的无需水平集重新初始化的C-V主动轮廓模型(英文)[J].光电工程,2006,33(9):52-58. 被引量:12
  • 2Chan T, Vese L. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001, 10(2): 266-277.
  • 3WANG Wen-yu. An Active Contour Model For Selective Segmentation [C]// International Conference on Computer Graphics, Imaging and Vision: New Trends. Washington, DC, USA: IEEE Press, 2005: 259-260.
  • 4Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a new variational formulation [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Press, 2005, 1: 430-436.
  • 5Li Chnnming, Kao Chiu-Yen, Gore J C, et al. Implicit Active Contours Driven by Local Binary Fitting Energy [C]//IEEE Conferenee on Computer Vision and Pattern Recognition (CVPR), Minnesota, USA: IEEE Press, 2007: 1-7.
  • 6WANG Yuping, DANG Chuangyin. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin- Squares [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(5): 579-595.
  • 7Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. Int'l J. Comp. Vis, 1997, 22: 61-79.
  • 8LIU Huafeng, CHEN Yunmei, CHEN Wufan. Neighborhood aided implicit active contours [C]// IEEE Conference on Computer Vision and Pattern Recognotion (CVPR). New York, USA: IEEE Press, 2006, 1: 841-848.
  • 9Wong W C K, Chung A C S. Bayesian image segmentation using local iso-intensity structural orientation [J]. IEEE Transaction on Image Processing, 2005, 14(10): 1512-1523.
  • 10李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125

共引文献28

同被引文献34

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部