期刊文献+

基于模式识别的非参数回归在短时交通流上的预测应用

Nonparametric Regression Based on Pattern Recognition and Its Application in Short-term Traffic Flow Forecasting
下载PDF
导出
摘要 针对非参数回归在短时交通流预测上的局限性,改进传统K近邻方法,加入模式识别功能(通过匹配数l实现)和变K和l搜索算法,得到最优K和l值及相应的预测结果。通过实验发现:改进的K近邻方法在误差范围为5%、9%时对应的预测准确率为84.4%、96.10%。将其与传统K近邻方法进行对比,通过计算两者预测效果的各方面指标,发现改进的K近邻方法在精度和实时性上都有了很大的提高。 Although nonparametric regression is widely used in short-term traffic flow forecasting,some questions still exist.For this reason,the ipmprovements in two aspects are made according to the traditional K-nearest neighbor method:(1) joining pattern recognition function which has the matching number l and(2) changing search algorithm for K and l to obtain optimal value and corresponding prediction results.The results of experiments show the improved K-nearest neighbor method has higher predictive accuracy and more real-time quality.
出处 《科学技术与工程》 北大核心 2013年第23期6952-6955,共4页 Science Technology and Engineering
基金 国家863计划项目(2011AA110306)资助
关键词 交通工程 短时交通流预测 非参数回归 模式识别 traffic engineering short—term traffic flow forecasting nonparametric regression pattern recognition
  • 相关文献

参考文献5

二级参考文献11

  • 1翟宇梅,赵瑞星,肖仁春,王力维.K近邻非参数回归概率预报技术及其应用[J].应用气象学报,2005,16(4):453-460. 被引量:12
  • 2Schaal Stefan. Nonparametric Regression for Learning. Proceeding of the Conference on Prerational Intelligence. Germany, 1994.
  • 3Altman N S. An introduction to kernel and nearest neighbor nonparametric regression. The American Statistician,1992, 46(3):175-185.
  • 4Oswald R K, William T S, Brian L S. Traffic Flow Forecasting Using Approximate Nearest Neighbor Nonparametric Regression. Research Report, No. UVACTS-15-13-7, 2001.
  • 5Yianilos P N. Data Structure and Algorithms for Nearest Neighbor Search in General Metric Space. Proceeding of the ACM-SIAM Symposium on Discrete Algorithms. 1993. 311-321.
  • 6罗阳.一种新的相似性度量——高分辨相似系数[J].空军气象学院学报,1996,17(1):23-32.
  • 7HartJiaWei Kamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 8Smith B L, Williams B M. Comparison of parametric and nonparametric models for traffic flow forecasting[ J ]. Transportation Research C, 2002, 10(4) :303 -321.
  • 9陈举华,郭毅之.GM模糊优化方法在小子样机械系统故障预测中的应用[J].中国机械工程,2002,13(19):1658-1660. 被引量:85
  • 10宫晓燕,汤淑明.基于非参数回归的短时交通流量预测与事件检测综合算法[J].中国公路学报,2003,16(1):82-86. 被引量:91

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部