期刊文献+

混合结构总体最小二乘参数估计 被引量:7

ON MIXED STRUCTURED TOTAL LEAST SQUARES FOR PARAMETERS ESTIMATION
下载PDF
导出
摘要 为解决当系数矩阵由常数列和非常数列组成,非常数列含有重复元素时传统混合总体最小二乘估计理论不够严密的问题,提出混合结构总体最小二乘参数平差模型,根据非线性最小二乘平差理论推导了混合结构总体最小二乘参数平差的迭代计算公式,并分别模拟计算了观测向量元素所受误差干扰量等于、大于和小于非常数列中非重复元素误差干扰量三种情况。实验结果表明:混合结构总最小二乘法不仅能够同时估计出系数矩阵常数列和非常数列所对应的参数值,而且能够对常数元素赋予零改正值,不同位置的同一元素赋予相同的改正值,单位权中误差估计值更接近模拟值;在系数矩阵非常数列中非重复元素所受误差干扰量大于观测矢量所受误差干扰量时,混合结构总体最小二乘参数平差法的参数和单位权中误差估计结果明显更接近于真实值。 In this contributions we defined the model of mixed structured total least squares according to the mixed least squarestotal least squares and proposed an iterative algorithm for the mixed structured total least squares problems, which solving by the nonlinear least squares adjustment theory. Three numerical examples are given at last, where assumes the errors of elements in observation vector equal , greater and lesss than the error of in dependent elements in coefficient matrix , respectively. It' s shown that the method represented in this paper would be able to estimate the parameters theoretically closer to the true value and attain the more precise mean square er ror of weight unit than least squares and mixed least squarestotal least squares, especially when the coefficient ma trix which holds more errors than observation vector.
出处 《大地测量与地球动力学》 CSCD 北大核心 2013年第4期56-60,共5页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(41074017)
关键词 总体最小二乘法 混合最小二乘 混合结构总体最小二乘法 参数估计 total least squares mixed least squares-total least squares mixed structured total least squares pa-rameters estimation
  • 相关文献

参考文献16

  • 1陈义,陆珏,郑波.总体最小二乘方法在空间后方交会中的应用[J].武汉大学学报(信息科学版),2008,33(12):1271-1274. 被引量:55
  • 2鲁铁定,周世健.总体最小二乘的迭代解法[J].武汉大学学报(信息科学版),2010,35(11):1351-1354. 被引量:70
  • 3Felus Y A and Schaffrin B A. Total least-squares approach in two stages for semivariogram modeling of aeromagnetic data [ J ]. GIS and Spatial Analysis,2005, :215 -220.
  • 4Golub G and Van Loan C. Total least squares[ J]. Smoothing Techniques for Curve Estimation, 1979,69 - 76.
  • 5Golub G H and Van Loan C F. An analysis of the total least squares problem[ J]. SIAM Journal on Numerical Analysis, 1980,17(6) : 883 -893.
  • 6Adcock R J. Note on the method of least squares [ J ]. The Analyst, 1877,4 : 183 - 194.
  • 7Van Huffel S and Vandewalle J. The total least squares prob- lem : computational aspects and analysis [ M ]. Society for In- dustrial Mathematics, 1991.
  • 8Abatzoglou T and Mendel J. Constrained total least squares [ A]. IEEE International Conference on Acoustics, Speech, and Signal Processing[ C]. 1987 : 1 485 - 1 488.
  • 9De Moor B. Structured total least squares and L2 approxima- tion problems [ J ]. Linear Algebra and Its Applications, 1993,188 : 163 - 205.
  • 10陈玮娴,袁庆,陈义.约束总体最小二乘在点云拼接中的应用[J].大地测量与地球动力学,2011,31(2):137-141. 被引量:12

二级参考文献32

  • 1陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:171
  • 2Felus Y A, Sehaffrin B. Performing Similarity Transformations Using the Error-In-Variables Model[C]. ASPRS 2005 Annual Conference Bahirnore, Maryland, 2005.
  • 3Golub H G. Van Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893.
  • 4Van Huffel S, Vandewalle J. The Total Least Squares Problem: Computational Aspects and Analysis[M]. Philadephia; Society for Industrial and Applied Mathematics, 1991.
  • 5Schaffrin B. A Note on Constrained Total Least Squares Estirnation[J]. Linear Algebra and Its Ap plications, 2006,417:245-258.
  • 6李德仁,郑肇葆.解析摄影测奄学[M].北京:测绘出版社,1992:74-75.
  • 7Golub G H, Lan Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980,17(6 ) : 883-893.
  • 8Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations [J].Three Algorithms J Geod, 2008,82:373-383.
  • 9Schaffrin B, Felus A Y. Multivariate Total Least- squares Adjustment for Empirical Affine Transformations[C]. The 6th Hotine Marussi Symposium for Theoretical and Computational Geodesy, Springer, Berlin, 2007.
  • 10Schaffrin B, Lee I P, Felus Y A, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Boll Geod Sci Affini, 2006, 65(3): 141-168.

共引文献133

同被引文献45

  • 1王鼎,张莉,吴瑛.基于角度信息的结构总体最小二乘无源定位算法[J].中国科学(F辑:信息科学),2009,39(6):663-672. 被引量:19
  • 2袁庆,楼立志,陈玮娴.加权总体最小二乘在三维基准转换中的应用[J].测绘学报,2011,40(S1):115-119. 被引量:46
  • 3姚吉利,韩保民,杨元喜.罗德里格矩阵在三维坐标转换严密解算中的应用[J].武汉大学学报(信息科学版),2006,31(12):1094-1096. 被引量:99
  • 4Adcock R J.Note on the method of least squares[J].The Analyst,1877,(4):183-194.
  • 5Golub G H and Van Loan C F.An analysis of the total least squares problem[J].SIAM Journal on Numerical Analysis,1980,17(6):883~893.
  • 6Schaffrin Burkhard.A note on constrained total least squares estimation[J].Linear Algebra and its Application,2006,(417):245~258.
  • 7Markovsky I,Van Huffel S.Overview of total least squares methods[J].Signal Process,2007,87:2283-2302.
  • 8Van Huffel S and Vandewalle J.The total least squares problem:computational aspects and analysis[M].Society for Industrial Mathematics,1991.
  • 9Zhou YJ,Kou XJ,Zhu JJ et al.A Newton algorithm for weighted total least-squares solution to a specific errors-in-variables model with correlated measurements[J].Stud Geophys Geod,2014,58(3):349-37.
  • 10Dunne B E and Williamson G A.QR-based TLS and mixed LS-TLS algorithms with applications to adaptive IIR filtering[J].IEEE Transactions on Signal Processing,2003,51(2):386-394.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部