期刊文献+

和频过程中的Rabi振荡与Landau-Zener遂穿过程 被引量:3

Rabi oscillation and Landau-Zener tunneling process of sum frequency
原文传递
导出
摘要 依据宏观现象与量子物理现象之间的相类似之处,利用干涉原理解释了和频场强度随着传输距离发生类似于原子系统中的Rabi振荡的物理机理,从Landau-Zener遂穿(LZT)的角度揭示了光学参量转换过程中的能量转移机理,以渐进解、解析解的形式详细展示出和频产生过程中的能量转移过程. to an analogy of the macroscopic phenomena to quantum physics, the physical mechanism that the sum frequency field intensity oscillate with the transmission distance, which is similar Rabi oscillation of the atom transition process in the two-level system, is explained with the interference theory. The energy transfer mechanism of the optics parametric conversion process is revealed from the points of Landau-Zener tunneling (LZT), and the producing process of sum frequency signal is showed detailedly with asymptotic, analytical solution.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第9期1015-1021,共7页 Scientia Sinica Physica,Mechanica & Astronomica
关键词 和频过程 Landau—Zener遂穿 RABI振荡 sum frequency, Landau-Zener tunneling, Rabi oscillation
  • 相关文献

参考文献23

  • 1Chiao R Y, Wu Y S. Manifestations of Berry's topological phase for the photon. Phys Rev Lett, 1986, 57:933-936.
  • 2Tomita A, Chiao R Y. Observation of Berry's topological phase by use of an optical fiber. Phys Rev Lett, 1986, 57:937-940.
  • 3Leonhardt U, Oiwnicki P. Relativistic effects of light in moving media with extremely low group velocity. Phys Rev Lett, 2000, 84:822-825.
  • 4Vorobeichik L, Narevicius E, Rosenblum G, et al. Electromagnetic realization of orders-of-magnitude tunneling enhancement in a double well system. Phys Rev Lett, 2003, 90:176806.
  • 5Longhi S. Coherent destruction of tunneling in waveguide directional couplers. Phys Rev A, 2005, 71 : 065801.
  • 6Suchowski H, Oron D, Arie A, et al. Geometrical representation of sum frequency generation and adiabatic frequency conversion. Phys Rev A, 2008, 78:063821.
  • 7李永放,李百宏,任立庆,王蕾,王兆华.和频过程中的绝热与透热过程[J].中国科学:物理学、力学、天文学,2010,40(12):1468-1475. 被引量:2
  • 8伏振兴.缀饰态表象下二能级原子系统的跃迁理论[J].宁夏师范学院学报,2007,28(6):1-5. 被引量:1
  • 9Landau L D, Lifshitz E M. Quantum Mechanics. New York: Pergmon, 1976. 194-196.
  • 10Zener C. Non-adiabatic crossing of energy levels. Proe R Soe London A, 1932, 137:696-702.

二级参考文献18

  • 1[1]K.Bergmann,H.Theuer,B.W.Shore.Coherent population transfer among quantum states of atoms andmolecules[J].J.Chem.Phys.,1990,(92):5363.
  • 2[2]G.P.Djotyan,J.S.Bakos,G.Demeter,et al.Coherent population transfer in Rb atoms by frequency-chirpedlaser pulses[J].Phys.Rev.A,2003,68 (05409):1-8.
  • 3[3]G.P.Djotyan,J.S.Bakos,Z.Sorlei,et al.Coherent control of atomic quantum states by single frequency-chirpedlaser pulses[J].Phys.Rev.A,2004,(70):063406,1-6.
  • 4[4]T.Rickes,L.P.Yatsenko,S.Steuerward,et al.Efficient adiabatic population transfer by two-photon excitationassisted by a laser-induced Stark shift[J].Chem.Phys.,2000,(113):534-546.
  • 5[5]D.Goswami.Optical pulse shaping approaches to coherent control[J].Phys.Rep.,2003,(374):385-481.
  • 6[6]M.Wollenhaupt,A.Prokelt,C.Sarpe-Tudoran,et al.Femtosecond strong-field quantum control with sinu-soidally phase-modulated pulses[J].Phys.Rev.A,2006,73:063409,1-15.
  • 7Suehowski H, Oron D, Arie A, et al. Geometrical representation of sum frequency generation and adiabatic frequency conversion. Phys Rev A, 2008, 78:063821.
  • 8Suchowski H, Prabhudesai V, Oron D, et al. Robust adiabatic sum frequency conversion. Opt Express, 2009, 17:12731--12740.
  • 9Nasr M B, Carrasco S, Saleh B E A, et al. Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. Phys Rev Lett, 2008, 100:183601.
  • 10Bortz M L, Fujimura M, Fejer M M, Increased acceptance bandwidth for quasi-phasematched second harmonic generation in LiNbO3 waveguides. Electron Lett, 1994, 30:34--35.

共引文献1

同被引文献43

  • 1Saltiel S M, Sukhorukov A A, Kivshar Y S. Multistep parametric processes in nonlinear. Prog Opt, 2005, 47:1-73.
  • 2Zhang C, Zhu Y Y, Yang S X, et al. Crucial effects of coupling coefficients on quasi-phase-matched harmonic generation in an optical superlattice. Opt Lett, 2000, 25:436-438.
  • 3Kim M-s, Yoon C S. Theoretical analysis of third-harmonic generation via direct third-order and cascaded second-order processes in CsLiB6Oto crystals. Phys Rev A, 2002, 65:033831.
  • 4Bergmann K, Theuer H, Shore B W. Coherent population transfer among quantum states of atoms and molecules. Rev Mod Phys, 1998, 70(3): 1003-1025.
  • 5Kuklinski J R, Gaubatz U, Hioe F T, et al. Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys Rev A, 1989, 40:6741-6744.
  • 6Oreg J, Hioe F T, Eberly J H. Adiabatic following in multilevel systems. Phys Rev A, 1984, 29:690-697.
  • 7Oreg J, Bergmann K, Shore B W, et al. Population transfer with delayed pulses in four-state systems. Phys Rev A, 1992, 45:4888-4896.
  • 8Sugny D, Ndong M, Lauvergnat D, et al. Laser control in open molecular systems: STIRAP and optimal control. JPPA-Chem, 2007, 190: 359-371.
  • 9Boradjiev I I, Vitanov N V. Transition time in the stimulated Raman adiabatic passage technique. Pbys Rev A, 2010, 82: 043407(8).
  • 10Rangelov A A, Gaubatz U, Vitanov N V. Broadband adiabatic conversion of light polarization. Opt Commun, 2010, 283:3891-3894.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部