期刊文献+

A novel QC-LDPC code based on the finite field multiplicative group for optical communications 被引量:6

A novel QC-LDPC code based on the finite field multiplicative group for optical communications
原文传递
导出
摘要 A novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) code is proposed based on the finite field multiplicative group,which has easier construction,more flexible code-length code-rate adjustment and lower encoding/decoding complexity.Moreover,a regular QC-LDPC(5334,4962) code is constructed.The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise(AWGN) channel with iterative decoding sum-product algorithm(SPA).At the bit error rate(BER) of 10-6,the net coding gain(NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB,0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975,the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method,respectively.So it is more suitable for optical communication systems. A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10^-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.
出处 《Optoelectronics Letters》 EI 2013年第5期378-380,共3页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61071117,61275077 and 61003256) the Natural Science Foundation of CQ CSTC(No.2010BB2409)
  • 相关文献

参考文献1

二级参考文献15

  • 1I. B. Djordjevic, W. Ryan and B. Vasic, Coding for Optical Channels, New York: Springer, 2010.
  • 2M. Nakazawa, K. Kikuchi and T. Miyazaki, High Spectral Density Optical Communication Technolo- gies, New York: Springer, 2010.
  • 3I. B. Djordjevic, M. Arabaci and L. L. Minkov, Jour- nal of Lightwave Technology 27, 3518 (2009).
  • 4Yuan Jianguo, Ye Wenwei, Jiang Ze, Mao Youju and Wang Wei, Optics Communications 273, 421 (2007).
  • 5H. Falsafain and M. Esmaeili, IEEE Transactions on Communications 60, 74 (2012).
  • 6Shengtian Yang, T. Honold, Yan Chen, Zhaoyang Zhang and Pei-liang Qiu, IEEE Transactions on Information Theory 57, 7507 (2011).
  • 7YUAN Jian-guo, WANG Wang and LIANG Tian-yu, Journal of Optoelectronics.Laser 23, 906 (2012).
  • 8M. Arabaci, I. B. Djordjevic, R. Saunders and R. M. Marcoccia, Journal of Lightwave Technology 27, 5261(2009).
  • 9YUAN Jian-guo, XIE Ya, WANG Lin, HUANG Sheng and WANG Yong, Optoelectronics Letters 9, 42 (2013).
  • 10I. B. Djordjevic, B. V. Vasic and S. Sankaranarayanan, Regular and Irregular Low-Density Parity-Check Codes for Ultra-Long Haul High-speed Optical Communica- tions: Construction and Performance Analysis, Pro- ceedings of the 29th Optical Fiber Communication Conference WM, WM4 (2004).

共引文献3

同被引文献26

  • 1Kou Y, Lin S, and Fossorier M Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and NewResults[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2711-2736.
  • 2Lan Lan, Liqing Zeng, et al. Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach[J]. IEEE Transactions on Information Theory, 2007, 53(7):2429-2458.
  • 3Fossorier M codes from Transactions 1793 P C. Quasi cyclic low-density parity-check circulant permutation matrices[J]. IEEE on Information Theory, 2004, 50(8): 1788-.
  • 4Hosung Park, Seokbeom Hong, Jong-Seon No Construction of High-Rate Regular Quasi-Cyclic Codes Based on Cyclic Difference Families [J] et al. LDPC IEEE Transactions on Communications, 2013, 61 (8): 3108-3113.
  • 5Zhang P, Yu S, Liu C, et al. Efficient encoding of QC-LDPC codes with multiple-diagonal parity-check structure[J]. Electronics Letters, 2014, 50(4):320-321.
  • 6B. Djordjevic, M. Arabaci, L. Minkov. Next generation fec for high-capacity communication in optical transport networks[J]. Journal of Lightwave Technology, 2009, 27(16): 3518-3530.
  • 7J. Kang, Q. Huang, S. Lin, Quasi-cyclic codes: an algebraic construction[J]. IEEE Transactions on Communications 2010, 58(5):1383-1396.
  • 8TU-T G.975. Forward error correction for submarine systems, 2000.
  • 9ITU-T G.975,1, Forward error correction for high bit-rate DWDM submarine systems, 2004.
  • 10袁建国,叶文伟.光传输系统中FEC码型的分析与研究[J].重庆邮电大学学报(自然科学版),2008,20(1):78-82. 被引量:21

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部