期刊文献+

基于单层小波变换的加权压缩感知图像处理

Weighted Compressed Sensing for Image Processing Based on the Single Layer Wavelet Transform
下载PDF
导出
摘要 针对简单正交基不能足够稀疏表示信号问题,提出了一种基于单层小波变换改进的加权压缩感知算法。根据图像小波变换的特点,对图像进行单层小波分解,保留低频系数,对高频系数进行测量;并提出设置加权系数矩阵,作用于信号小波正交变换后的高频稀疏系数,增强其系数的稀疏性,增强图像的重构质量;重构算法采用贪婪算法中的OMP算法。实验结果表明该算法对重构精度有进一步提高。 Since the orthogonal basis can not sparsify the signal efficiently,a new weighted compressed sensing algorithm is presented based on the single layer wavelet transform. According to the properties of the wavelet transform, we use a single-layer wavelet transform to decompose images preserve the low-pass coefficients and measured the high-pass wavelet coefficients. This algorithm employs the weighted coefficient matrix to enhance the high-pass coefficient sparsity and the quality of the recovered image. The orthogonal matching pursuit belongs to a greedy algorithm and is used for reconstruction. Simulation results show that the proposed algorithm can improve the quality of the recovered image.
作者 王晨 高美凤
出处 《江南大学学报(自然科学版)》 CAS 2013年第4期399-404,共6页 Joural of Jiangnan University (Natural Science Edition) 
基金 江苏省产学研前瞻性联合研究项目(BY2012066) 江苏高校优势学科建设工程项目
关键词 压缩感知 单层小波变换 加权矩阵 贪婪算法 compressed sensing, single layer wavelet transform,weighted matrix, greedy algorithm
  • 相关文献

参考文献2

二级参考文献31

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2DDonoho compressed sensing [ J ]. IEEE Transaction In- formation Theory,2006,52 (4) : 1289-1306.
  • 3Ecandes, Jromberg, TFao. Robust uncertain typrinci- pless: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transaction Information Theory,2006,52 ( 2 ) : 489-509.
  • 4Ecandes, Mwakin. An introduction to compressive sam- piing [ J ]. IEEE Signal Processing Magzine ,2008,25 ( 2 ) : 21-30,.
  • 5DDonoho, YTsaig. Extensions of compressed sensing [ J ]. Signal processing, 2006,86 ( 3 ) -533-548.
  • 6Ecandes,Tlrao. Near optimal signal recovery from random projections:Universal encoding strategy? [J]. IEEE trans- action information theory,2006,52(12) :5406-5425.
  • 7Sgmallat, ZF zhang. Matching pursuit with time frequen- cy dictionaries [ J ]. IEEE transaction on signal process- inz. 1993.41 (12) :3397-3415.
  • 8JATropp, AGGilbert. Signal recovery from random meas- urements via orthogonal matching pursuit [ J ]. IEEE trans- action information theory,2007,53 (12) :4655-4666.
  • 9Tong Zhong. Sparse recovery with orthogonal matching pursuit under RIP[ J ]. IEEE Transactions,2011,57 (9) : 6215-6221.
  • 10Wei Dai, Olaica Milenkovic, Subspace pursuit for com- pressive sensing signal reconstruction [ J]. IEEE Transac- tions, 2009,55 ( 5 ) : 2230 -2249.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部