摘要
针对简单正交基不能足够稀疏表示信号问题,提出了一种基于单层小波变换改进的加权压缩感知算法。根据图像小波变换的特点,对图像进行单层小波分解,保留低频系数,对高频系数进行测量;并提出设置加权系数矩阵,作用于信号小波正交变换后的高频稀疏系数,增强其系数的稀疏性,增强图像的重构质量;重构算法采用贪婪算法中的OMP算法。实验结果表明该算法对重构精度有进一步提高。
Since the orthogonal basis can not sparsify the signal efficiently,a new weighted compressed sensing algorithm is presented based on the single layer wavelet transform. According to the properties of the wavelet transform, we use a single-layer wavelet transform to decompose images preserve the low-pass coefficients and measured the high-pass wavelet coefficients. This algorithm employs the weighted coefficient matrix to enhance the high-pass coefficient sparsity and the quality of the recovered image. The orthogonal matching pursuit belongs to a greedy algorithm and is used for reconstruction. Simulation results show that the proposed algorithm can improve the quality of the recovered image.
出处
《江南大学学报(自然科学版)》
CAS
2013年第4期399-404,共6页
Joural of Jiangnan University (Natural Science Edition)
基金
江苏省产学研前瞻性联合研究项目(BY2012066)
江苏高校优势学科建设工程项目
关键词
压缩感知
单层小波变换
加权矩阵
贪婪算法
compressed sensing, single layer wavelet transform,weighted matrix, greedy algorithm