期刊文献+

SLEUTH城市扩展模型的改进及验证——以唐山市为例 被引量:1

IMPROVEMENT AND VALIDATION OF URBAN EXPANSION MODEL SLEUTH:CASE OF TANGSHAN
下载PDF
导出
摘要 研究城市扩展以对城市化过程做出有效决策,进而调控未来的城市增长,对实现城市经济、社会与生态效益的最大化具有十分重要的意义.本研究首先以唐山市为城市扩展研究区从2个方面改进了SLEUTH模型,其次基于改进的SLEUTH模型对唐山市城市扩展进行情景预测.模型改进具体内容:引入分区定标机制,分区定标能有效体现城市内部不同区域增长速度的差异,进而改进模型模拟精度;引入宏观因素来改进SLEUTH模型的参数自修改规则,进而影响SLEUTH模型对城市增长趋势的模拟,理论上在城市增长机制上应进一步提高模型的合理性及模型精度.基于2种情景模式:惯性扩展模式、政策调节模式,预测了唐山市2010—2020年的城市增长,政策调节模式预测结果显示唐山市在2010—2020年间将继续保持面积年增长大于2.5%的高速城市化速度,其中2015、2020年城市规模将分别达到2009年规模的1.18、1.35倍. Urban expansion investigations are essential for effective urban planning.SLEUTH,an urban expansion model,was improved and Tangshan was selected to check the improved model.Future urban growth in Tangshan was predicted with improved SLEUTH.Zoning reflecting differences in urban growth rate improved model accuracy;Self-modification rule of SLEUTH was improved by macro factors,affecting the simulation of urban growth trend,making the principles of SLEUTH more reasonable and leading to better results.Forecasts of urban development in Tangshan in 2020 were produced with two scenarios:inertia scenario,policy adjusted scenario.Prediction of policy adjusted scenario indicated that Tangshan will maintain an annual area growth rate of greater than 2.5% from 2010 to 2020.Urban area in 2015 and 2020 will be 1.18 and 1.35 times that of 2009 respectively.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期387-394,共8页 Journal of Beijing Normal University(Natural Science)
基金 中国地震局地质研究所基本科研业务费专项资助项目(IGCEA0903) 国家自然科学基金资助项目(40971221 40771011)
关键词 SLEUTH 城市扩展 唐山市 情景预测 SLEUTH urban sprawl Tangshan scenario forecast
  • 相关文献

参考文献14

  • 1Batty M, Xie Y. Modeling inside GIS: Partl: model structures, exploratory spatial analysis[J]. International Journal of Geographic information Systems, 1994a, 8 (3) : 291.
  • 2Batty M, Xie Y. Modeling inside GIS: Part2: Selecting and calibrating urban models using ARC/INFO[J]. International Journal of Geographic information Systems, 1994b, 8(5) : 451.
  • 3Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area[J]. Environment and Planning B: Planning and Design, 1997, 24:247.
  • 4Clarke K C, Gaydos L. Loose-coupling a cellular automaton model and GIS= long-term urban growth prediction for San Francisco and Washiton/Baltimore[J] International Journal of Geographic Information Science, 1998, 12(7):699.
  • 5Waddell P. Urbansim: modelling urban development for land use, transportation and environment planning [J]. Journal of American Planning Association, 2002,68(3):297.
  • 6Deal B M, Sun Z. A spatially explicit urban simulation model: the land-use evolution and impact assessment model ( LEAM )[M] /// Ruth, Mattias. Regionaldevelopment, infrastructure and adaptation to climate variability and change, New York: Springer, 2005.
  • 7Jantz C A, Goetz S J, Donato D, et al. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban mode[J]. Comput Environ and Urban Systems, 2010, 34(1):1.
  • 8Rafiee R, Mahiny A S, Khorasani N, et al. Simulating urban growth in Mashad City, Iran through the SLEUTH model(UGM) [J]. Cities, 2009, 26 : 19.
  • 9Silva E A, Clarke K C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal[J]. Comput Environ and Urban Systems, 2002, 26 : 525.
  • 10Wu X, Hu Y, He H S, eta|. Per{ormance evolution o{ the SLEUTH model in the Shenyang metropolitan area of northeastern China[J]. Environ Model Assess, 2009, 14 ; 221.

二级参考文献34

共引文献32

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部