期刊文献+

一般二步幂零群上Laplacian算子的基本解

Fundamental solution of Laplacian on the general nilpotent groups of step two
下载PDF
导出
摘要 考虑(2n+p)维空间R^(2n)×R^p上的向量场X_j,j=1,…,2n.通过构造二步幂零Lie群,利用群上的Fourier变换的方法得到了△=1/2∑_(j=1)^(2n) X_j^2的基本解.首先由二步幂零群的Fourier变换理论得到了群上的Plancherel公式,逆公式以及△的表示,即△通过群上的Fourier变换转化为一个可逆的Hilbert-Schmidt算子,其次,通过群上的Plancherel公式得到的逆算子定义一个缓增分布,最后,利用Heimite函数和Laguerre函数的性质得到了基本解的积分表达式. Consider the vector fieldsX_j in R^(2n)×R^p,j = 1,...,2n.By constructing the nilpotent Lie group of step two,the fundamental solution of△=1/2∑_(j=1)~n X_j^2 is got.First,by using the group Fourier transform of the nilpotent Lie group of step two,the Plancherel formula and inverse formula are got and the Fourier transform of△is also found,i.e.,an invertible Hilbert-Schmidt operator.Secondly, a tempered distribution is defined by using the Plancherel formula.Finally,the integral form of the fundamental solution is followed by using the related propositions of Hermite function and Laguerre function.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2013年第3期347-358,共12页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11171298)
关键词 向量场 幂零 群上的Fourier变换 基本解 vector fields nilpotent the group Fourier transform fundamental solution
  • 相关文献

参考文献9

  • 1Beals R, Bernard G, Greiner P. The Green Function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann Complexes[J]. Adv Math, 1996, 121: 288-345.
  • 2Beals R, Greiner P. Calculus on Heisenberg manifolds[A]. Annals of Mathematics Studies 119[C]. Princeton: Princeton University Press, 1988.
  • 3Chang D C, Markina I. Anisotropic quaternion Carnot groups: Geometric analysis and Green function[J]. Adv Appl Math, 2007, 39: 345-394.
  • 4Peloso M, Ricci F. Analysis of the Kohn Laplacian on quadratic CR manifolds[J]. J Funct Anal, 2003, 203(2): 321-355.
  • 5Wang Wei. On the tangential Cauchy-eter operators on nondegenerate quadratic hyper- surfaces in ]HI2[J]. Math Nachr, DOI 10.1002/mana.201000119.
  • 6Niu Pengcheng, Luo Xuebo. Spectral properties of second order differential operators on two-step nilpotent Lie groups[J]. J Partial Differ Eqs, 2000, 13(1): 1410.
  • 7Wang Wei. The tangential Cauchy-Fueter complex on the quaternionic Heisenberg group[J]. J Geom Phys, 2011, 61(1): 363-380.
  • 8Wang Haimeng, Wang wei. On octonionic regular functions and szeg5 projection on the Octonionic Heisenberg group[J]. Complex Anal Oper Theory, DOI 10.1007/s11785-013-0324- 4.
  • 9Folland G. Harmonic analysis in phase space[M]. Annals of Mathematics Studies 122, Prince- ton: Princeton University Press, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部