期刊文献+

一种用于半监督学习的核优化设计 被引量:2

A Kernel Optimization Design for Semi-supervised Learning
下载PDF
导出
摘要 半监督学习研究主要关注当训练数据的部分信息缺失的情况下,如何获得具有良好性能和推广能力的学习机器。本文我们提出了一种基于核优化的半监督学习框架,将数据嵌入到高维特征空间,从而与线性分类器等价。在核的设计上,采用了基于谱分解的无监督核设计,提出了学习边界,通过最小化边界来获得最优核表示。通过实验,对不同的核方法进行了比较,证明了我们结论的正确性。 Semi-supervised learning aims to obtain good performance and learning ability under lacking of some information on training examples. We proposed a semi-supervised learning framework based on optimizing kernel,which project data into high dimensional feature space and equal to linear classification. In kernel design, we applied spectral feature decomposition to unsupervised kernel design, and found optimal kernel by minimizing learning bound. With experimental results, we demonstrated our theory by comparison of different kernel approaches.
作者 崔鹏
出处 《软件工程师》 2013年第9期40-41,共2页 Software Engineer
基金 黑龙江省教育厅资助项目(11551086)
关键词 谱特征分解 半监督学习 监督学习 降维 Spectral feature decomposition Kernel Semi-supervised learning Supervised learning Dimensionreduction
  • 相关文献

参考文献5

二级参考文献65

  • 1陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61-64. 被引量:10
  • 2Duda R O, Hart P E, Stork D G. Pattern classification [ M]. New York: A Wiley-Interscience Publication 2000.
  • 3Wang S, Siskind J M. Image segmentation with ratio cut [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 6 ) : 675-690.
  • 4Shi J, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 888--905.
  • 5Ding C H Q, He X, Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering [ A ]. IEEE International Conference on Data Mining,2001 : 107--114.
  • 6Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm [ A ]. Neural Information Processing System,2002,14:849--856.
  • 7Cao L, Li Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classification [ A ]. IEEE International Conference on Computer Vision, 2007: 1-8.
  • 8Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2004,34(4) :1907-1916.
  • 9Dhillon I S, Guan Y, Kulis B. Weighted graph cuts without eigenvectors: a multilevel approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligeace,2007,29 (11) :1944-1957.
  • 10Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystrom method [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2) :214- 225.

共引文献53

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部