期刊文献+

无需分片积分的扩展等参有限元法模拟混凝土裂缝扩展 被引量:1

Crack Growth Simulation in Concrete Beam Based on Extended Isoparametric Finite Element Method Under Quadrature Without Sub-area
下载PDF
导出
摘要 针对有限元方法在模拟裂缝时的缺点,采用扩展有限元方法进行了混凝土梁的开裂模拟。采用统一的富集函数表示非连续场,避免了混合单元的出现,且此格式下的富集自由度具有特定意义。在非连续单元积分时,采用简易积分方案,在满足精度的基础上,减少了建模的复杂性。最后基于等参单元模型,运用扩展有限元方法进行了混凝土梁在位移加载下的裂缝扩展模拟,并与已有研究成果进行了比较,结果比较吻合。表明此模型在简化计算下保证了精度和收敛性。 Aiming at the drawback of FEM in modeling crack, an extended finite element method for modeling the fracture of a concrete beam is studied. Unified enrichment function is adopted in the approximation of discontinuous field, in which mixing element is avoided and the enrichment freedom has specific significance. A simple integration scheme is used for numerical quadrature of discontinuous zones. This scheme can reduce the complication with acceptable accuracy. At last, based on isoparametric element, crack growth in a concrete beam under displacement loading is simulated. The results agree well with those obtained from other methods. This scheme guarantees accuracy and convergence and simplifies procedure.
出处 《石家庄铁道大学学报(自然科学版)》 2013年第3期91-93,106,共4页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 河北省住房和城乡建设厅项目(2012-121)
关键词 等参元 扩展有限元 混凝土梁 裂缝扩展 isoparametric element extended finite element method concrete beam crack growth
  • 相关文献

参考文献6

  • 1Daux C, Moes N, Sukumar N. Arbitrary branched and intersecting cracks with the extend finite element method [ J ]. Int. J. Numer. Meth. Engng, 2000, 48:1741-1760.
  • 2Belyschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [ J ]. Int. J. Numer. Meth. Engng 1999, 45: 601-620.
  • 3Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. Int. J. Numer Meth En- gng, 1999, 46: 131-150.
  • 4Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes [ J ]. Int. J. Numer Meth Engng, 2006, 67: 868-893.
  • 5喻葭临,张其光,于玉贞,孙逊.扩展有限元中非连续区域的一种积分方案[J].清华大学学报(自然科学版),2009(3):351-354. 被引量:11
  • 6方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64

二级参考文献23

  • 1李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 2方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报(自然科学版),2007,47(3):344-347. 被引量:43
  • 3Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. Int J Numer Meth Engng, 1999, 45:601 - 620.
  • 4Moes N, Dolbow J, Belytsehko T. A finite element method for crack growth without remeshing[J]. Int J Numer Meth Engng, 1999, 46: 131- 150.
  • 5Daux C, Moes N, Sukumar N, et al. Arbitrary branched and intersecting cracks with the extend finite element method [J]. Int J Numer Meth Engng, 2000, 48:1741 - 1760.
  • 6Melenk J M, Babuska I. The partition of unity finite element method: Basic theory and applications[J]. Comput Methods Appl Meth Engng, 1996, 139: 289-314.
  • 7Song J-H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes [J]. Int J Numer Meth Engng, 2006, 67:868 - 893.
  • 8Areias P M A, Belytsehko T. Analysis of three-dimensional crack initiation and propagation using the extended finite element method [J]. Int J Numer Meth Engng, 2005, 43: 760 - 788.
  • 9Wells G N, Sluys L J. A new method for modeling cohesive eracks using finite elements [J]. Int J Numer Meth Engng, 2001, 50: 2667-2682.
  • 10石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..

共引文献71

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部