期刊文献+

时变离散时空系统的混沌性 被引量:3

Chaos of time-varying discrete spatiotemporal systems
下载PDF
导出
摘要 时变离散时空系统含有大量初始参数,将其用于保密通信设计可加强密钥数量.研究一类时变离散时空系统的混沌性,给出这类时变离散时空系统在Devaney意义下混沌的一些新概念,构造出一类特殊的时变离散时空混沌系统.该结果可拓宽离散混沌系统的研究范围. Time-varying discrete spatiotemporal systems contain many tunable parameters and are advantageous in the sense of having a sufficiently large key space for designing good security systems. Chaos in a class of time-var-ying discrete spatiotemporal systems is studied. Several new concepts for these systems to be chaotic in the sense of Devaney are given and a special type of such chaotic systems is constructed. To some extent, the new results have expanded the scope of the research of discrete spatiotemporal chaotic systems.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2013年第5期469-474,共6页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(61070252)~~
关键词 混沌 保密通信设计 动力系统 离散系统 时变离散时空系统 DEVANEY混沌 chaos secure communication design dynamical system discrete system time-varying discrete spa-tiotemporal system Devaney chaos
  • 相关文献

参考文献11

  • 1Elaydi S N, Discrete chaos: with applications in science and engineering, 2nd revised edition, Chapman & Hall/ CRC, 2007.
  • 2Tian C J, Chen G R. Stability and chaos in a class of 2- dimensional spatiotemporal discrete systems [ J ]. Journal of Mathematical Analysis and Applications, 2009, 356 (2) : 800-815.
  • 3A1Sharawi Z, Angelos J, Elaydi S, et al. An extension of Sharkovsky's theorem to periodic difference equations [J]. Journal of Mathematical Analysis and Applications, 2006, 316(1): 128-141.
  • 4Tian Chuanjan, Chen Guanrong. Chaos of a sequence of maps in a metric space [ Jl Chaos, Solltons & Fractals, 2006, 28(4) : 1067-1075.
  • 5田传俊,陈关荣.关于变参数离散Devaney混沌系统[J].深圳大学学报(理工版),2006,23(1):16-20. 被引量:14
  • 6Shi Y M, Chen G. Chaos of time-varying discrete dynami- cal systems [ J]. Journal of Difference Equations and Ap- plications, 2009, 15(5): 429-449.
  • 7Huang Qiuling, Shi Yuming, Zhang Lijuan. Chaotifica- tion of nonautonomous discrete dynamical systems [ J ]. International Journal of Bifurcation and Chaos, 2011 , 21 (11): 3359-3371.
  • 8Shi Yuming. Chaos in nonautonomous discrete dynamical systems approached by their induced systems [ J]. Inter- national Journal of Bifurcation and Chaos, 2012, 22 ( 11 ) : 1250284-1-1250284-12.
  • 9郝春宝,范钦杰,孟明.变参数动力系统的扩张性[J].沈阳师范大学学报(自然科学版),2012,30(1):16-19. 被引量:1
  • 10Zhang Lijuan, Shi Yuming. chaotic discrete systems [ J ] Time-varying perturbations of International Journal of Bi- furcation and Chaos, 2012, 22 (3): 1250066-1- 1250066-14.

二级参考文献28

  • 1范钦杰.混沌与拓扑强混合[J].大学数学,2004,20(6):68-72. 被引量:12
  • 2周作领,廖公夫,王兰宇.正拓扑熵与紊动不等价——一类极小子转移[J].中国科学(A辑),1994,24(3):256-261. 被引量:11
  • 3田传俊,陈关荣.关于变参数离散Devaney混沌系统[J].深圳大学学报(理工版),2006,23(1):16-20. 被引量:14
  • 4LiTY YorkeJA.周期3意味着混沌[J].美国数学月刊,1975,83:985-992.
  • 5Devaney R L.混沌动力学介绍[M].第2版.纽约:爱第逊-韦斯利出版社,1989.48-50.
  • 6CHEN G,DONG X.从混沌到有序:内容、方法和应用[M].新加坡:国际科学出版社,1998.135-160.
  • 7Elaydi S N.离散混沌[M].佛罗里达:商业出版社,2000.90-120.
  • 8BanksJ BrooksJ CairnsG.关于Devaney混沌的定义[J].美国数学月刊,1992,99:332-334.
  • 9ChenG TianCJ ShiYM.离散时空系统的稳定和混沌[J].混沌、独立子与分形,2005,25:637-647.
  • 10TianCJ ChenG.度量空间中一列映射的混沌性[J].混沌、独立子与分形,2006,28(4):1067-1075.

共引文献13

同被引文献23

  • 1李连胜,陈晚华.基于MATLAB的数字图像质量评价[J].湖南科技学院学报,2005,26(5):176-177. 被引量:14
  • 2陈海龙,李宏.基于MATLAB的伪随机序列的产生和分析[J].计算机仿真,2005,22(5):98-100. 被引量:53
  • 3Long Min Peng Fei Qiu Shuisheng Chen Yanfeng.Implementation of a new chaotic encryption system and synchronization[J].Journal of Systems Engineering and Electronics,2006,17(1):43-47. 被引量:7
  • 4Wu Xiangjun,Lu Hongtao,Shen Shilei.Synchronization of a new fractional-order hyperchaotic system[J].Physics Letters A,2009,373(27/28):2329-2337.
  • 5Pecora L M,Carroll T L.Synchronization of chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
  • 6Li Demin,Wang Zidong,Zhou Jie,et al.A note on chaotic synchronization of time-delay secure communication systems[J].Chaos,Solitons & Fractals,2008,38(4):1217-1224.
  • 7Du Hongyue,Shi Peng,Lu Ning.Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control[J].Nonlinear Analysis:Real World Applications,2013,14 (2):1182-1190.
  • 8Li Jiangcheng,Mei Dongcheng.The risks and returns of stock investment in a financial market[J].Physics Letters A,2013,377(9):663-670.
  • 9Wang Zhen,Huang Xia,Shi Guodong.Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay[J].Computers & Mathematics with Applications,2011,62(3):1531-1539.
  • 10Bhalekar S,Daftardar-Gejji V.Fractional ordered Liu system with time-delay[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(8):2178-2191.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部