期刊文献+

一种非线性的无监督对象检测模型

A Nonlinear Model Based on Unsupervised Object Detection Method
下载PDF
导出
摘要 现有的无监督对象检测模型采用线性模型引入自顶向下的对象信息。由于对象的多变性及背景的复杂性,线性模型无法很好地刻画局部区域的对象信息。本文采用非线性模型学习引入对象性,同时采用了一种结合的策略引入对象的显著信息,以实现对象的检测。我们采用著名的Pascal图像库以提供广泛的对象样本,基于核的支持向量机则用于非线性模型的学习。实验结果,表明本文方法能够改善对象检测的性能。 The existing unsupervised object detection model uses the linear model to introduce the top-down object information.Since the variations of the objects and the complexities of the backgrounds,the linear model may not describe the "objectness" of the local region very well.In this paper,we used non-linear model to learn and introduce the object information.Meanwhile,we combined several saliency detection methods to obtain more accurate saliency map.The well-known PASCAL dataset was used to provide kinds of object samples,and the kernel based support vector machine was used for the non-linear model learning.The experimental results demonstrated that the non-linear model can improve the object detection performance.
作者 徐庆禹
出处 《中国西部科技》 2013年第9期47-49,共3页 Science and Technology of West China
关键词 无监督对象检测 非线性 支持向量机 Unsupervised Object Detection Nonlinear Support Vector Machine
  • 相关文献

参考文献10

  • 1Y. N. Wu, Z. Si, H. Gong, and S.-C. Zhu.Leaming active basis modelforobject detection and recognition[J].International Journal of ComputerVision, vol. 90, no. 2, 2010:198-235.
  • 2J. Arpit, R. Saiprasad, and M. Anurag.Multi-stage contour baseddetectionof deformable objects[C].InEuropean Conference onComputer Vision,2008.
  • 3P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.Object detection with discriminatively trained part based models[J].IEEE Transactions on Pattern Analysis and Machinelntelligence, 2009.
  • 4B. Alexe, T. Deselaers,and V. Ferrari.What is an object?[C].IEEEConference on Computer Vision and PattCTnRecognition, Jun,2010: 73-80.
  • 5FanmanMeng, Hongliang Li, Guanghui Liu, and King NgiNgan.Obj ectco-segmentation based on shortest path algorithm and saliencymodel[J].IEEE Transactions on Multimedia, 2012,14(5).:1429-1441.
  • 6FanmanMeng, Hongliang Li, Guanghui Liu, and King NgiNgan.Imagecosegmentation by incorporating color reward strategy and activecontourmodel[J].IEEE Transactions on Cybernetics, 43(2).:725 -737, April,2013.
  • 7X. Hou and L. Zhang. Saliency detection: A spectral residual ap-proach[Cj.IEEE Conference on Computer Vision andPattem Recognition, 2007.
  • 8S. Goferman, L. Z. Manor, and A. Tal.Context-aware saliency detection[C].IEEE Conference on Computer Vision andPattem Recognition, Jun,2010:2376-2383.
  • 9M.-M. Cheng, G-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu.Globalcontrast based salient region detection[C] .IEEE Conference on ComputerVision and Pattern Recognition, Jun,2011:409-416.
  • 10QiongYan,Li Xu,Jianping Shi,JiayaJia.Hierarchical Saliency DetectionfC].IEEE Conference on Computer Vision andPattem Recognition,2013.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部