期刊文献+

具有非匹配不确定性混沌系统有限时间同步的滑模控制(英文)

Finite-time Synchronization of a Class of Chaotic Systems with Unmatched Uncertainties Via Sliding Mode Technique
下载PDF
导出
摘要 本文针对具有非匹配不确定性的混沌系统,提出一种终端滑模同步控制实现混沌系统的有限时间同步.首先给出了一种新的非奇异的terminal滑动模面的设计方法,使得系统可在有限时间内收敛到平衡点,接着系统在终端滑模控制器的作用下最终能到达滑模面.最终建立了同步精确度范围和非匹配不确定性范围和终端滑模参数之间的数学关系. In this paper, the problem of finite-time chaos synchronization of two chaotic systems with unmatched uncertainties is presented by using a terminal sliding mode controller. First a new nonsingular terminal sliding surface is introduced and ensure the system convergence to the zero equilibrium point in finite-time. Then a terminal sliding mode controller is designed to drive the system state variables to reach and retain in the terminal sliding mode. The mathematical relationship between the neighborhood of the equilibrium point and the range of the unmatched uncertainties and parameters of the sliding mode is formulated.
出处 《新疆大学学报(自然科学版)》 CAS 2013年第3期304-309,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of People’s Republic of China(Grant Nos.61164004) the Natural Science Foundation of Xinjiang(Grant No.2013211B06) the Foundation of Xingjiang Institute of Engineering(Grant No.2012XGZ281412,2010XGZ051212)
关键词 有限时间同步 终端滑模 混沌系统 非匹配不确定性 匹配不确定性 Finite-time synchronization Terminal sliding mode Chaotic system Unmatched condition Matched con- dition
  • 相关文献

参考文献8

  • 1Wang H, Han Z Z, Xie Q Y, et al. Sliding mode control for chaotic system based on LMI[J]. Commum Nonlinear Sci Number Simul, 2009, 14(4):1410-1417.
  • 2Li H Q, Liao X ELi C J. Chaos control and synchronization via a novelchatter free sliding mode control strategy[J]. Neurocomputing, 2011, 74: 3212-3222.
  • 3Lin W. Adaptive chaos control and synchronization in only locally Lipschitz systems[J]. Phys Lett A, 2008, 372: 3195-3200.
  • 4Yang C H, Ge Z M, Chang C M, et al. Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control[J]. Nonlinear Anal Real World Appl, 2010, I l: 1977-1985.
  • 5Zhu H, Cui B. Stabilization and synchronization of chaotic systems via intermittent control[J]. Commum Nonlinear Sci Numer Simul, 2010, 15: 3577-3586.
  • 6Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM J Control Optim, 2000, 38(3):751-766.
  • 7Venkataraman S T, Gulati S. Control of nonlinear systems using terminal sliding modes[J]. In:Proc Amer Contr Conf, Chicago, IL, USA, 1992, 1: 891-893.
  • 8Aghababa M P, Khanmohammadi S, Alizadeh G. Finite-time synchronization of two difference chaotic systems with unknown parameters via sliding mode technique[J]. Appl Math Model, 201 l, 35: 3080-3091.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部