期刊文献+

两种群随机捕食-食饵系统的有界性(英文)

Boundedness on the Two-Species Stochastic Predator-Prey System
下载PDF
导出
摘要 研究了一类两种群随机Lotka-Volterra捕食-食饵模型.在适当的环境噪音假设下,证明了此系统存在唯一正的全局解,并且这个解是随机最终有界的. A class of two species stochastic Lotka-Volterra predator-prey system is discussed. We show that, under a suitable hypothesis on the environmental noise, the stochastic Lotka-Volterra system has a unique global positive solution and this positive solution will be stochastically ultimately bounded.
出处 《新疆大学学报(自然科学版)》 CAS 2013年第3期310-312,共3页 Journal of Xinjiang University(Natural Science Edition)
基金 supported by the National Natural Science Foundation of P.R.China(Grant Nos.11271312,11261058) the China Postdoctoral Science Foundation(Grant Nos.20110491750) the Natural Science Foundation of Xinjiang(Grant Nos.2012211B07,2011211B08)
关键词 随机捕食-食饵系统 伊藤公式 随机最终有界 Stochastic Lotka-Volterra predator-prey system Ito formula stochastically ultimately boundedness
  • 相关文献

参考文献9

  • 1Ruduicki R. Long-time behaviour of a stochastic prey-predator model[J]. Stochast Process Appl, 2003, 108: 93-107.
  • 2Rudnicki R, Pikor K. Influence of stochastic perturbation on prey-predator systems[J]. Math Biosci, 2007, 206:108-119.
  • 3Liu M, Wang K. Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturba- tion[J]. Appl Math Modell, 2012, 36:5344 - 5353.
  • 4Mat X, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in populations dynamics[J]. Stochastic Process Appl, 2002, 97:95-110.
  • 5Pang S, Deng F, Mat X. Asymptotic properties of stochastic population dynamics[J]. Dyn Contin Discrete lmpuls Syst Ser A Math Anal, 2008, 15: 603-620.
  • 6Zhu C, Yin G. On competitive Lotka-Volterra model in random environments[J]. J Math Anal Appl, 2009, 357: 154-170.
  • 7Cheng S R. Stochastic population systems[J]. Stoch Anal Appl, 2009, 27: 854-874.
  • 8Luo Q, Mat X. Stochastic population dynamics under regime switching[J]. J Math Anal Appl, 2007, 334: 69-84.
  • 9Mat X. Stochastic Differential Equations and Applications[M]. Chichester: Horwood Publishing,1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部