期刊文献+

带Neumann边界条件的抛物型方程的样条差分方法 被引量:1

Spline Difference Method for Solving Parabolic Equations with Neumann Boundary Conditions
下载PDF
导出
摘要 基于四次样条函数和广义梯形公式,针对抛物型方程的Neumann边值问题,构造了一族含参数θ(θ∈[0,1])的隐式差分格式,该格式在时间方向的精度为二阶,在空间方向的精度为四阶,当θ=1/3时,该差分格式在时间方向的精度可提高到三阶.数值实验表明方法是非常有效的. Based on the quartic spline function and generalized trapezoidal formulas, a family of implicit difference schemes, including parameter 0, 0 E [0, 1 ], for solving parabolic equation with Neumann boundary conditions were constructed. The accuracy of these schemes was second-order in time direction and fourth-order in space direction. If 0 = 1/3, the accuracy of this scheme in time direction was im- proved to third-order. At last, the numerical results showed that our methods were very efficient.
作者 刘蕤 高锐敏
出处 《郑州大学学报(理学版)》 CAS 北大核心 2013年第3期37-40,76,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省基础与前沿技术研究计划项目 编号132300410381
关键词 抛物型方程 四次样条函数 差分格式 NEUMANN边值问题 parabolic equation quartic spline function difference scheme Neumann boundary condition
  • 相关文献

参考文献11

二级参考文献33

共引文献66

同被引文献11

  • 1葛永斌,田振夫,詹咏,吴文权.求解扩散方程的一种高精度隐式差分方法[J].上海理工大学学报,2005,27(2):107-110. 被引量:19
  • 2UN H W, ZHANG J. A high-order compact boundary value method for solving one-dimensional heat equations[J]. Numerical Methods for Partial Differential Equations, 2003, 19: 846.
  • 3SALLAM S, NAIM A M, ABDEL-AZIZ M R. Unconditionally stable Cl-cubic spline collocation method for solving parabolic equations [ J ].International Journal of Computer Mathematics, 2004, 81(7): 813.
  • 4WEN R H, SHAO H Z. Domain decomposition schemes with high-order accuracy and unconditional stability [ J ]. Applied Mathematics and Computation, 2013, 219: 6170.
  • 5GAO G H, SUN Z Z. Compact difference schemes for heat equation with Neumann boundary conditions ( 11 ) [ J ]. Numerical Methods for Partial Differential Equations, 2013, 29: 1459.
  • 6KHAN A, KHAN I, AZIZ T. Sextic spline solution of a singularly perturbed boundary-value problems [ J ]. Applied Mathematics and Computation, 2006, 181: 432.
  • 7RASHIDINIA J, JALILIAN R, MOHAMMADI R, et al. Sextie spline method for the solution of a system of obstacle problems [ J]. Applied Mathematics and Computation, 2007, 190: 1669.
  • 8CUYT A. Padd Approximants for Operators: Theory and Applications [M]. Lecture Notes in Mathemarics, Berlin.. Springer, 1984.
  • 9金升平,熊方方,李琼.矩阵的实特征值为正的条件与判断[J].重庆理工大学学报(自然科学),2011,25(1):117-119. 被引量:2
  • 10马明书,李改弟.抛物型方程的一个新的高精度恒稳定的隐式差分格式[J].数学的实践与认识,2001,31(3):365-368. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部