期刊文献+

雷达与视觉信息融合的行人检测方法 被引量:8

Pedestrian detection by radar vision data fusion
下载PDF
导出
摘要 首先建立两传感器间的坐标变换模型,将雷达扫描的深度信息映射到图像上。然后对雷达扫描的数据进行聚类分析,并结合行人物理属性,对聚类点簇进行筛选获得有效点簇信息;根据摄像机的成像规律,确定行人成像区域与其所处位置的关系,从而确定行人检测感兴趣区域。在此基础上,提取感兴趣区域的梯度方向直方图特征,运用支持向量机检测行人。实际交通场景测试结果表明本文方法能够对行人实时检测,且准确率可达93%以上。 A pedestrian detection method by radar and vision information fusion is proposed. First, a coordinate transformation model of two sensors is established, by which depth information of radar scanning can be mapped to image. Then, radar scanning data are divided into a number of point clusters. Considering the physical attribute of pedestrian, the radar point clusters are selected again to obtain effective point cluster information. According to camera imaging rule, the relationship between pedestrian imaging region and his/ her position is deduced. As a result, the Region of Interest (ROI) in pedestrian detection is determined. On this basis, the Histogram of Oriented Gradient (HOG) feature of the ROI is extracted,and the hypothesized pedestrian is verified using Support Vector Machine (SVM) classifier. Experiment results indicate that the proposed method is able to detect pedestrian in real time,and the accuracy rate can exceed 93%.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第5期1230-1234,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51108208 51278520 51278220) 博士后科学基金项目(20110491307) 吉林大学基本科研业务费项目(201103146)
关键词 交通运输系统工程 行人检测 信息融合 感兴趣区域 engineering of communications and transportation system pedestrian detection informationfusion region of interest
  • 相关文献

参考文献8

二级参考文献33

  • 1刘国忠,王伯雄,史辉,罗秀芝,张明照,王瑞.足部三维测量系统中CCD传感器的全局标定[J].光学精密工程,2007,15(7):1124-1129. 被引量:16
  • 2刘大学,戴斌,李政,贺汉根.一种单线激光雷达和可见光摄像机的标定方法[J].华中科技大学学报(自然科学版),2008,36(S1):68-71. 被引量:15
  • 3李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16
  • 4Curio C, Edelbrunner J, Kalinker T, et al. Walking pedestrian recognition [J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3) : 155-163.
  • 5Llorca D R,Sotelo M A, Parra I, et al. An experimental study on pitch compensation in pedestrian-protection systems for collision avoidance and mitigation [J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 469-474.
  • 6Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors [J]. International Journal of Computer Vision, 2007, 75(2) :247-266.
  • 7Jung H G, Lee Y H, Yoon P J, et al. Sensor fusion based obstacle detection/classification for active pedestrian protection system [C]//Prceeedings of Advances in Visual Computing/Second International Symposium. Lake Tahoe, USA: LNCS Press, 2006:294-305.
  • 8Mendel A, Nunes U. Situation-based multi-target de- tection and tracking with laser scanner in outdoor semistructured environment [C]//Proeeedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan: IEEE Press, 2004 : 88-93.
  • 9Collado J M, Hilario C, de la Escalera A. Model based vehicle detection for intelligent vehicles [C]// Proc IEEE Intelligent Vehicles Symposium. Parma, Italy: IEEE Press, 2004: 572-577.
  • 10Tan H C, Zhang Y J. Computing eigenface from edge images for face recognition based on hausdorff distance [C]//Proceedings of the 4th International Conference on Image and Graphics. Sichuan, China: IEEE Press, 2007 : 639-644.

共引文献38

同被引文献38

引证文献8

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部