期刊文献+

中碳钢温变形过程的流变应力 被引量:2

Flow stress of medium carbon steel under warm compression deformation
下载PDF
导出
摘要 为了制定中碳钢温轧工艺,利用Gleeble-3500热模拟试验机对中碳钢进行温压缩试验,研究其在不同变形温度(550~700℃)和应变速率(0.001~10s-1)下的流变行为,讨论温变形过程流变应力的影响因素。研究结果表明:中碳钢温变形过程由铁素体动态回复、铁素体动态再结晶、渗碳体球化和稳态变形4个阶段构成,其软化机理主要有铁素体动态再结晶和珠光体动态球化。 In order to design the warm rolling process of medium carbon steel, flow stress under warm compression deformation was investigated by experiments. The experiments were carried out on a Gleeble- 3500 thermal simulation machine at temperature of 550-00 ℃with constant strain rates 0. 001 -s-1. The influence factors in warm deformation were studied. Results show that the stress-strain curve of medium carbon steel under warm deformation is composed of four stages: the ferrite dynamic recovery, ferrite dynamic recrystallization, cementite spheroidization, and steady deformation state. The main soften mechanisms are ferrite dynamic recrystallization and pearlite dynamic spheroidization.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第5期1320-1324,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家科技支撑计划项目(2011BAF15B01) 教育部新世纪优秀人才计划项目(NCET-09-0117) 国家科技重大专项项目(2011ZX04002-101) 河北省科技计划项目(10212101D)
关键词 金属材料 中碳钢 温变形 流变应力 metal material medium carbon steel warm deformation flow-stress
  • 相关文献

参考文献13

二级参考文献61

共引文献203

同被引文献31

  • 1Tjong S C, Mai Y W. Processing-structure-property aspects of particulate- and whisker-reinforced titani- um matrix composites[J]. Composites Science and Technology, 2008, 68(3-4): 583-601.
  • 2Morsi K, Patel V V. Processing and properties of titanium-titanium looride (TiBw) matrix composites- a review[J]. Journal of Materials Science, 2007, 42 (6) : 2037-2047.
  • 3Xiao L, Lu W J, Qin J N. Steady state creep of in situ TiB plus La2Oa reinforced high temperature ti- tanium matrix composite[J]. Materials Science and Engineering A, 2009, 499(1-2): 500-506.
  • 4Das M, Bhattaeharya K, Dittrick S A, et al. In situ synthesized TiB-TiN reinforced Ti6A14V alloy com- posite coatings: Microstructure, tribological and in- vitro biocompatibility[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 259- 271.
  • 5Shu Shi-li, Xing Bin, Qiu Feng, et al. Comparative study of the compression properties of TiA1 matrix composites reinforced with nano-TiB2 and nano- Ti5 Sia particles[J]. Materials Science and Engineer- ing A, 2013, 560(10): 596-600.
  • 6Geng L, Ni D R, Zhang J. Hybrid effect of TiBw and TiCp on tensile properties of in situ titaniummatrix composites[J]. Journal of Alloy and Com- pounds, 2008, 463(1-2): 488-492.
  • 7Qi J Q, Wang H W, Zou C M. Influence of matrix characteristics on tensile properties of in situ synthe- sized TiC/TA15 composite [J]. Materials Science and Engineering A, 2012, 553: 59-66.
  • 8Jonas J J, Sellars C M. Tegart W J MeG. Strength and structure under hot-working conditions[J]. Int Metal Rev, 1969,14(1) :1-24.
  • 9Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Met, 1966,14(9):1136- 1138.
  • 10Mandal S, Rakesh V, Sivaprasad P V, et al. Con- stitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Mater Sci Eng A, 2009,500(1-2) :114-121.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部