期刊文献+

基于半监督boosting表面肌电信号多类模式识别

sEMG multi-class pattern recognition based on semi-supervised boosting algorithm
下载PDF
导出
摘要 针对表面肌电信号较为复杂,且获取标注样本代价较大的问题,提出了基于半监督boosting学习的表面肌电信号多类模式识别方法。与目前半监督boosting算法着重解决两类分类问题,将多类问题转化为多个两类问题不同,本文方法通过联合分类置信度及样本间相似度确定每次迭代过程中未标注样本的预测类别,达到利用未标注样本提高多类问题正确识别率的目的,避免了将某一样本划分多类的问题。由实验分析可知,本文算法与现有半监督boosting算法相比,正确识别率更高,对于不同标注样本数及不同基分类器具有较好的鲁棒性。本文方法降低了人工标注代价,对多类问题具有良好的识别效果。 The surface electromyographic signal (sEMG) is often complicated, and it is expensive and time-consuming to obtain labeled samples of sEMG, especially when it has to be done manually by experts. To overcome such problems, a new semi-supervised boosting algorithm is used to classify multi-class problem of sEMG in this paper. This algorithm can use a large number of unlabeled samples together with a small number of labeled samples to build a better learner. Most semi- supervised algorithms have been designed for binary classification. The shortcoming is that when extended to multi-class classification these algorithms are unable to exploit the fact that each sample is only assigned to one class. The advantage of the new semi-supervised boosting algorithm used in this paper is that it exploits both classification confidence and similarities among samples when deciding the pseudo-labels for unlabeled samples. Empirical study with six movements of sEMG show' that the new algorithm performs better than the state-of-the-art boosting algorithms for semi-supervised learning.It gives large reduction in the number o{ human labeled samples, high classification results, which has practical significance in sEMG pattern recognition
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第5期1415-1426,共12页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技发展计划项目(20090350) 吉林大学“985工程”项目 高等学校博士学科点专项科研基金项目(20100061110029) 吉林大学博士研究生交叉学科科研计划项目(2011J009)
关键词 信息处理技术 肌电信号 半监督算法 BOOSTING 多类模式识别 information processing technology sEMG semi-supervised algorithm boosting multi-class classification
  • 相关文献

参考文献17

  • 1刘利,刘萍萍,韦佳.用于带边信息人脸数据的半监督维数约减算法[J].吉林大学学报(工学版),2011,41(S1):189-193. 被引量:1
  • 2董元方,李雄飞,李军,李巍.XML文档分类的IL-AdaBoost算法[J].吉林大学学报(工学版),2011,41(4):1054-1058. 被引量:3
  • 3Bennett K P, Demiriz A. Semi-supervised support vector machine[C]//NIPS, Denver, USA: IEEE, 1999:368-374.
  • 4Chapelle O, Zien A. Semi-supervised classification by low fensity deperation[C]//10th Int Workshop on AI and Stat, USA: IEEE, 2005:57-64.
  • 5Blum A, Chawla S. Learning from labeled and unla- beled data using graph mineuts [C]//ICML CA, USA: IEEE, 2001:19-26.
  • 6Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and Harmonic func- tions[C]//ICML, Washington D C, USA: IEEE, 2003: 58-65,.
  • 7Zhou D, Bousquet O, Lal T, et al. Scholkopf B learning with local and global vonsistency[C] // COLT Cambridge, MA: MIT Press, 2004: 321- 328.
  • 8Belkin M, Matveeva I, Niyogi P. Regularization and semisupervised learning on large graphs [C] /// COLT,2004 : 624-638.
  • 9Bennett K P, Demiriz A, Maclin R. Exploiting un- labeled rata in ensemble methods [C]//KDD, Edm- onton, Canada. 2002:289-296.
  • 10Chen K, Wang S. Regularized boost for semi-super- vised learning[C]//N1PS, 2008 : 281-288.

二级参考文献16

  • 1王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 2Fabrizio Sebastiani. Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002, 34(1):1-47.
  • 3Inokuchi A, Washio T, Motoda H. An apriori based algorithm for mining frequent substructures from graph data[C]//Proc PKDD, 2000: 13-2,3.
  • 4Kuramochi M, Karypis G. Frequent subgraph dis- covery[C]//Proe ICDM, 2001: 313-320.
  • 5Yan X, Han J. gSpan: graph-based substructure pattern mining[C]//Proc ICDM, 2002 .. 721-724.
  • 6Zaki M J. Efficiently mining frequent trees in a for- est[C]//Proc SIGKDD, 2002.. 71 80.
  • 7Doueet A, Ahonen-Myka H. Naive clustering of a large XML document collection[C]//The 1st Annu- al Workshop of the Initiative for the Evaluation of XML Retrieval, Schloss Dagstuhl, Germany, 2002: 81-88.
  • 8wLaurent Candillier, Isabelle Tellier, Fabien Torre. Transforming XML trees for efficient classification and clustering[C] // Workshop of the Initiative for the Evaluation of XML Retrieval, 2005: 469-480.
  • 9Freund Y, Schapire R E. A decision theoretic gen- eralization of on line learning and an application to boosting[J]. Journal of Computer and System Sci enees, 1997, 55(1): 119-139.
  • 10Schapier R E, Singer Y. BoosTexter: a boosting- based system for text categorization[J]. Machine I.earning, 2000, 39(2/3):135-168.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部