摘要
本文首先将 AUSMPW格式与三阶 MUSCL格式融合 ,给出了其在任意曲线坐标下的三维形式 ,并将其与 LU-SGS格式结合 ,应用于可压缩 Euler和 Navier-Stokes方程的求解。其次 ,构造了一种新的通量限制器。最后 ,为了验证 LU -AUSMPW混合格式的性能 ,将平面叶栅跨音速无粘流动以及喷管超音速粘性流动作为算例。本文计算结果与文献计算结果和实验数据相符很好 ,表明采用 LU-AUSMPW混合格式数值模拟可压缩流场 ,具有较高的计算精度。
An AUSMPW scheme in conjunction with the third order MUSCL scheme is developed for the multidimensional hyperbolic conservation laws in curvilinear coordinates.The present scheme is combined with the LU SGS Scheme for compressible Euler and Navier Stokes equations solution.A new MUSCL limiter is proposed.The effects of the present limiter are analyzed in the aspects of efficiency,accuracy and robustness of LU AUSMPW schemes.In order to identify the performance of LU AUSMPW schemes,a two dimensional transonic and supersonic inviscid flow in the cascade of two circular arc blades and a two dimensional supersonic viscous flow in convergent divergent nozzle are chosen as numerical examples.The accuracy of the scheme has been assessed by comparing the results with experimental data or other numerical results available in literature.It is shown that the LU AUSMPW schemes in conjunction with present limiter possess obvious superiority in aspects of convergence rate,accuracy and robustness for calculating compressible flow fields,and there is no any spurious oscillation near the shock wave.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2000年第2期124-128,共5页
Journal of Aerospace Power
关键词
计算流体力学
可压缩流动
曲线坐标
激波
computational fluid mechanics
compressible flow
curvilinear coordinates
shock wave