期刊文献+

一类求解Hamilton-Jacobi方程的交错网格差分格式 被引量:1

A Class of Difference Schemes with Staggered Grids for Hamilton-Jacobi Equation
下载PDF
导出
摘要 Hamilton- Jacobi方程在控制论和微分对策中有广泛的应用 ,由于其表达形式与双曲守恒律方程极为相近 ,这有利于借助于求解双曲守恒律方程的差分格式来构造求解 Hamilton- Jacobi方程的差分格式。文中将 Ham ilton- Jacobi方程变化为双曲守恒律方程 ,利用求解双曲守恒律方程的交错网格的 Gauss型差分格式 ,构造了一类求解 Hamilton- Jacobi方程的交错网格的 Gauss型差分格式。这类格式具有高分辨、计算简便等优点。最后针对一系列的一维和二维问题进行了数值试验 ,试验结果很令人满意。 Hamilton Jacobi (HJ) equations are frequently encountered in applications, e.g., in differential games and control theory, they are closely related to hyperbolic conservation laws. It is helpful for us to construct difference approximation schemes for HJ equation with aids of schemes for conservation laws. This paper presents a class Gauss schemes with staggered grids for HJ equation, based on Gauss schemes with staggered grids for conservation laws. The schemes are numerically tested on a variety of 1D and 2D problems; the solutions obtained in computation are satisfied.[KH3/4D]
出处 《南京航空航天大学学报》 CAS CSCD 北大核心 2000年第5期573-578,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金!(编号 :96 A5 2 0 0 4)资助项目
关键词 守恒定律 差分格式 HAMILTON-JACOBI方程 conservation laws difference scheme Hamilton Jacobi equation
  • 相关文献

参考文献1

  • 1Osher S,SIAM J Numer Anal,1991年,28卷,4期,907页

同被引文献7

  • 1Harten A. High resolution schemes for hyperbolic conservation laws [ J ]. Journal of Computational Physics, 1983,49 (3) :357-393.
  • 2Harten A. On a class of high resolution total-variation-stable finite-difference schemes[ J ]. SIAM Journal of Numerical Analysis, 1984,21 ( 1 ) : 1-23.
  • 3Wu H M ,Yang S L. MmB-a new class of accurate high resolution schemes for conservation laws in two dimensions[ C ]. Preprint SC 89-6, KonradZuse-Zentrum fur Information stechnik Belin,Juli, 1989.
  • 4Nessyahu H,Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws [ J ]. Journal of Computational Physics, 1990,87 ( 2 ) :408-463.
  • 5Jiang G S, Levy D, Lin C T, Osher S ,Tadmor E. High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws[ J]. SIAM Journal of Numerical Analysis,1998,35 (6) :2147-2168.
  • 6Jiang G S,Tadmor E. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws [ J ]. SIAM Journal of Scientific Computing,1998,19(6) : 1892-1917.
  • 7邱建贤,戴嘉尊.二维交错网格的GAUSS型格式[J].计算物理,2001,18(3):241-246. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部