期刊文献+

跨声速高压涡轮静叶水滴喷雾/空气冷却性能研究 被引量:4

Research on Mist/Air Cooling Performance of Transonic High Pressure Turbine Stator
下载PDF
导出
摘要 采用气热耦合的方法对径向对流内冷方式的Mark-Ⅱ跨声速高压涡轮静叶进行数值仿真准确度验证,分析湍流模型、转捩模型和有无耦合对计算结果准确度的影响。在此基础上,通过对该对流冷却通道的冷却空气加湿来研究加湿前后冷却性能强化。由于单纯的对流冷却时冷却空气流速快,液滴蒸发不充分导致两相流冷却效能未充分发挥,所以将Mark-Ⅱ改型为气膜+对流复合型冷却叶片,详细讨论不同加湿量和液滴直径对叶片强化换热的影响,同时给出加湿对于跨声速叶栅流场和边界层的影响。 Conjugate heat transfer methodology is used to verify the accuracy of numerical simulation program for the Mark II transonic high pressure turbine stator which is cooled internally by air flowing through radial round pipes,and different turbulence models and transition models is employed to analyze the influence on results.On the basis of it,through injecting mist into the convection cooling channel to discuss the improvement of cooling performance.The cooling air flow speed and inadequate droplet evaporation duo to simple convection cooling structure and two-phase flow cooling performance is not fully play.And then,a compound cooling blade with film cooling and convection cooling techniquesis acquired which is modified from the blade of Mark II,the effects of various parameters including mist concentration and water droplet diameter on the improvement of cooling performance are investigated,meanwhile the impact of mist cooling is presented for transonic cascade flow field and boundary layer.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第16期131-137,共7页 Journal of Mechanical Engineering
基金 中央高校基本科研业务费专项基金资助项目(HEUCF130310)
关键词 气热耦合 跨声速高压涡轮 两相流冷却 强化换热 边界层 Conjugate heat transfer methodology Transonic high pressure turbine Mist/air cooling Heat transfer enhancement Boundary layer
  • 相关文献

参考文献10

  • 1徐虹艳,张靖周,姚玉.涡轮叶片非对称扇形气膜孔冷却特性数值研究[J].机械工程学报,2011,47(18):152-157. 被引量:5
  • 2LI Xianchang, WANG Ting. Simulation of film cooling enhancement with mist injection[C]//ASME Turbo Expo 2005. Power for Land, Sea and Air, June 6-9, 2005, Reno-Tahoe, Nevada, USA. New York: ASME, 2005:919-929.
  • 3HOMAYOON K, MEHRZAD S. Numerical modeling of film cooling with and without mist injection[J]. Heat Mass Transfer, 2009, 45: 727-741.
  • 4WANG Ting, LI Xianchang. Mist film cooling simulation at gas turbine operating conditions[J]. International J. Heat and Mass Transfer, 2008, 51 : 5305-5317.
  • 5DHANASEKARAN T S, WANG Ting. CFD model validation and prediction of mist/steam cooling in a 180-degree bend tubes[C]//International Heat Transfer Conference 14-22833. August 8-13, 2010, Washington, DC, USA: 213-225.
  • 6HYLTON L D, MILHEC M S, TURNER E R, et al. Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R]. NASA-CR-168015, 1983.
  • 7LUO Mingcong, ZHENG Qun, SUN Lanxin, et al. The influence of inlet fogging for the stable range in a transonic compressor stage[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134: 022002.1-022002.11.
  • 8WILLIAM D Y, JAMES H L. Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane[C]//ASME Turbo Expo2003. Power for Land, Sea, and Air, June 16-19, 2003, Atlanta, Georgia, USA. NewYork: ASME, 2003: 351-360.
  • 9WANG Zhenfeng, YAN Peigang, HUANG Hongyan, et al. Conjugate heat transfer analysis of a high pressure air-cooled gas turbine vane[C]//ASME Turbo Expo 2010. Power for Land, Sea and Air, June 14-18, 2010, Glasgow, UK. NewYork: ASME, 2010: 501-508.
  • 10董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析[J].航空动力学报,2008,23(2):201-207. 被引量:32

二级参考文献25

  • 1ITO S, GOLDSTEIN R J, ECKERT E R G. Film cooling of a gas turbine blade[J]. ASME Journal of Engineering for Power, 1978, 100: 476-481.
  • 2KUBO R, OTOMO F, FUKUYAMA Y, et al. Aerody- namic loss increase due to individual film cooling injections from gas turbine nozzle surface[R]. ASME 98-GT-497, 1998.
  • 3DAY C R B, OLDFILED M L G, LOCK G D. The influence of film cooling on the efficiency of an annular nozzle guide vane cascade [J]. ASME Journal of Turbomaehinery, 1999, 121- 145-151.
  • 4BERHE M K, PATANKAR S V. Curvature effects on discrete-hole film cooling[J]. ASME Journal of Turbomachinery, 1999, 121: 781-791.
  • 5NASIR S, EKKAD S V, ACHARYA S. Effect of com- pound angle injection on flat surface film cooling with large streamwise injection angle[J]. Experimental Thermal and Fluid Science, 2001, 25: 23-29.
  • 6SARGISON J E, (3UO S M, OLDFIELD M L G, et al. A converging slot-hole film-cooling geometry--Part 2: transonic nozzle guide vane heat transfer and loss[J]. ASME Journal of Turbomachinery, 2002, 124: 461-471.
  • 7GAO Zhihong, NARZARY D P, HAN J H. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes[J]. International Journal of Heat and Mass Transfer, 2008, 51: 2139-2152.
  • 8DITTMAR J, SCHULZ A, WITrIG S. Assessment of various film cooling configurations including shaped and compound angle holes based on large-scale experiments[J]. Journal of Turbomachinery, 2005, 127: 718-725.
  • 9GRITSCH M, COLBAN W, SCHAR H, et al. Effect of hole geometry on the thermal performance of fan-shaped film cooling holes [J]. Journal of Turbomachinery, 2003, 125: 57-64.
  • 10ZUNIGA H A, KRISHANA V, KAPAT J S. Effect of non-symmetrical lateral diffusion on film cooling effectiveness from a row of shaped holes[R]. AIAA, 2008-5165, 2008.

共引文献35

同被引文献9

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部