期刊文献+

CaO对Pt/C催化硬脂酸脱羧反应性能的影响 被引量:1

Effect of CaO on decarboxylation of stearic acid over Pt/C catalyst
下载PDF
导出
摘要 以硬脂酸(C17H35COOH)脱羧为探针反应,研究了亚临界水中CaO对Pt/C催化脱羧反应性能的影响。实验表明,CaO可以促进脱羧反应,对十七烷选择性没有影响。CaO/硬脂酸物质的量比为0.5时,在330℃反应1 h,硬脂酸转化率由未添加CaO时的46.06%提高到66.99%。硬脂酸催化脱羧的最佳反应温度为350℃,高于这一温度时,烷基链上碳碳键断裂的副反应增加,导致十七烷选择性降低。亚临界水中硬脂酸脱羧反应符合一级动力学,建立的动力学方程可以较好地预测不同反应条件下十七烷的产率。根据实验结果推测,氧化钙与硬脂酸反应生成硬脂酸钙,催化剂表面的吸附态羧酸盐增加,从而提高了脱羧反应的速率。 The effects of CaO addition and temperature on decarboxylation of stearic acid over Pt/C catalyst in subcritical water were investigated.The conversion of stearic acid increased dramatically,while the selectivity to heptadecane hardly changed with the addition of CaO.At 330 ℃ the conversion of stearic acid reached a maximum with Ca/stearic mol ratio of 0.5.Moreover,Pt/C catalyzed decarboxylation of stearic acid in subcritical water exhibited first-order kinetics.It was proposed that dissociative stearic acid was adsorbed on Pt/C catalyst,forming surface octadecanoate species and adsorbed H.The C-C bond dissociated via H insertion,resulting in the formation of heptadecane and CO2.The addition of CaO promoted the dissociation of stearic acid.As a result,the amount of adsorbed octadecanoate increased and the reaction was accelerated.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2013年第7期850-855,共6页 Journal of Fuel Chemistry and Technology
基金 国家自然科学基金青年科学基金(21006123)
关键词 氧化钙 硬脂酸 脱羧 亚临界水 calcium oxide stearic acid decarboxylation subcritical water
  • 相关文献

参考文献20

  • 1鹿清华,朱青,何祚云.我国生物柴油原料可获性及成本分析[J].当代石油石化,2010,18(9):7-10. 被引量:10
  • 2KNOTHE G. A technical evaluation of biodiesel from vegetable oils vs. algae. will algae-derived biodiesel perform?[J]. Green Chern, 2011, 13(11) : 3048-3065.
  • 3PA TIL P D, GUDE V G, DENG S G. Transesterification of camelina sativa oil using supercritical and subcritical methanol with cosolvents[J] . Energy Fuels, 2010, 24(2): 746-751.
  • 4LEVINE R B, PINNARA T T, SA V AGE P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification[J]. Energy Fuels, 2010, 24(9): 5235-5243.
  • 5BERENBLYUM AS, DANYUSHEVSKY V Y, KATSMAN E A, PODOPLELOVA T A, FLID V R. Production of engine fuels from inedible vegetable oils and fats[J]. Petrol Chern, 2010, 50(4): 305-311.
  • 6CARIOCAJOB, HILUY FlLHOJ J, LEAL M R LV, MACAMBIRA F S. The hard choice for alternative biofuels to diesel in Brazil[J]. Biotechnol Adv, 2009, 27(6): 1043-1050.
  • 7DEM1RBAS A. Competitive liquid biofuels from biomass[J]. Appl Energy, 2011, 88(1): 17-28.
  • 8SCHWAB A W, DYKSTRA GJ, SELKE E, SORENSON S C, PRYDE E H. Diesel fuel from thermal decomposition of soybean oil[J].J Amer Oil Chern Soc, 1988,65(11): 1781-1786.
  • 9WIGGERS V R, WISNIEWSKI AJr, MADUREIRA LAS, CHIVANGA BARROS A A, MEIER H F. Biofuels from waste fish oil pyrolysis: continuous production in a pilot plant[J]. Fuel, 2009, 88(11): 2135-2141.
  • 10WIGGERS V R, MEIER H F, WISNIEWSKI AJr, CHIV ANGA BARROS A A, WOLF MACIEL M R. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study[J]. Bioresour Technol, 2009, 100 (24 ) : 6570.fJ577.

二级参考文献10

共引文献22

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部