期刊文献+

基于稀疏表示和脉冲耦合神经网络的医学影像融合算法 被引量:1

Medical Image Fusion Algorithm Based on Sparse Representation and Pulse Coupled Neural Network
下载PDF
导出
摘要 为满足医学图像辅助诊断的需要,提出一种基于稀疏表示和脉冲耦合神经网络(PCNN)的CT和MR影像融合算法。首先,原始图像通过滑动窗方法构成联合矩阵,通过K-SVD算法得到该联合矩阵的冗余字典,采用正交匹配追踪算法得到该联合矩阵的稀疏系数;然后,根据稀疏系数的特点,采用脉冲耦合神经网络来融合稀疏系数;最后,由融合后的稀疏系数和冗余字典得到融合矩阵,反变换得到融合图像。实验图像为10组配准的脑部CT和MR图像,采用5种性能指标来评价融合图像的质量,同2种流行的医学影像融合算法进行比较,结果显示算法除QAB/F指数外,其他4项指标均为最优,Piella指数、QAB/F指数和BSSIM指数的均值分别为0.760 4、0.877 1和0.537 3,融合图像的纹理和边缘清晰,对比度高。主观和客观分析显示,算法的融合性能比较优越。 A novel fusion algorithm for medical image based on sparse representation and pulse coupled neural network (PCNN) was proposed to meet the demand of computer-aided diagnosis from the medical images. First, the K-SVD algorithm was used to obtain the redundant dictionary of the joint matrix which was obtained by sliding window technique. Next, sparse coefficients for the joint matrix were set up through orthogonal matching pursuit (OMP) algorithm. Then, the sparse coefficients were fused by a PCNN based on their characteristics. At last, the fused image was obtained by transforming the fused matrix which was got by the fused sparse coefficients and redundant dictionary. Ten groups of co-aligned medical images were tested by experiments and the quality of the fused image was evaluated by five kinds of commonly used objective criterions. Comparing with the other two popular medical image fusion algorithms, the proposed algorithm was optimal for the four object indexes except for QAB/F index, the mean of Piella, QAB/r and BSSIM indexes were 0. 760 5, 0. 877 1 and 0. 537 3 respectively. The texture, edge and contrast of fused image were optimal. Subjective and objective analysis of the results showed the advantages of the proposed algorithm.
作者 吴双 邱天爽
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第4期448-453,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(81241059 61172108) 国家科技支撑计划项目(2012BAJ18B06)
关键词 图像融合 K-SVD 脉冲耦合神经网络(PCNN) 计算机断层扫描(CT) 核磁共振(MRI) image fusion K-SVD pulse coupled neural network (PCNN) CT MRI
  • 相关文献

参考文献15

  • 1Barra V, Boirev JY. A general framework for the fusion of anatomical and functional medical images [J]. NeuroImage, 2001, 13(3),410 -424.
  • 2Das S, Kundu MK. NSCT - based multimodal medical .image fusion using pulse-coupled neural network and modified spatial frequency [J]. Medical & Biological Engineering & Computing, 2012, 50( 10), 1105 -1114.
  • 3杨谦,齐翔林,汪云九.视皮层V1区简单细胞的稀疏编码策略[J].计算物理,2001,18(2):143-146. 被引量:9
  • 4Johnson JL, Padgett ML. PCNN models and applications [J]? IEEE Trans Neural Netw, 1999, 10(3),480 -498.
  • 5Li Min, Cai Wei, Zheng Tan. A region-based multi-sensor image fusion scheme using pulse-coupled neural network [J]. 2006, 27(16),1948-1956.
  • 6Yang Shuyuan, Wang Min, Lu Yanxiong, et al. Fusion of multiparametric SAR images based on SW -nonsubsampled contourlet and PCNN [J].2009,89(12): 2596 -2608.
  • 7Wang Zhaobin, Ma Yide, Gu J. Multi-focus image fusion using PCNN [J]. Pattern Recogn, 2010, 43(6),2003 -2016.
  • 8Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transaction on Signal Processing, 2006, 54 (11) : 4311 - 4322.
  • 9Yang Bin, Li Shutao. M ultifocus image fusion and restoration with sparse representation [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4) :884 -892.
  • 10Wang Zhaobin, Ma Yide, Cheng Feiyan, et al. Review of pulse?coupled neural networks t n. Image Vision Comput, 2010, 28 (1) :5 - 13.

二级参考文献4

  • 1Ferster D,Nature,1996年,380卷,249页
  • 2Chen S,Technical report Dept Stat Stanford Univ,1996年
  • 3Mallat S G,IEEE Trans Signal Processing,1993年,41卷,3397页
  • 4Yong M P,Science,1992年,256卷,1327页

共引文献8

同被引文献18

  • 1Hill PR, Canagarajah CN, Bull DR. Image fusion using complexwavelets[ C]//BMVC. Cardiff, 2002 : 1 - 10.
  • 2Mitianoudis N, Stathaki T. Pixel-based and region-based imagefusion schemes using ICA bases[ J]. Information Fusion, 2007,8(2) : 131 -142.
  • 3Das S, Kundu MK. NSCT-based multimodal medical imagefusion using pulse-coupled neural network and modified spatialfrequency [J]. Medical & Biological Engineering & Computing,2012,50(10) : 1105 -1114.
  • 4Aharon M, Elad M, Bruckstein A. K-SVD : An algorithm fordesigning overcomplete dictionaries for sparse representation [ J].IEEE Transaction on Signal Processing, 2006 , 54(11) : 4311 -4322.
  • 5Mairal J, Bach F, Ponce J, et al. Online learning for matrixfactorization and sparse coding [ J ]. The Joumal of MachineLearning Research, 2010, 11: 19 -60.
  • 6Yang Bin, Li Shutao. Multifocus image fusion and restorationwith sparse representation [ J ]. IEEE Transactions onInstrumentation and Measurement, 2010,59(4) :884 - 892.
  • 7Johnson JL, Padgett ML. PCNN models and applications [ J].IEEE Transactions on Neural Networks, 1998 , 10 ( 3 ) : 480 -498.
  • 8Wang Zhaobin, Ma Yide, Gu J. Multi-focus image fusion usingPCNN[ J]. Pattern Recognition, 2010, 43(6): 2003 -2016.
  • 9Gray CM, KSnig P, Engel AK, et al. Oscillatory responses in catvisual cortex exhibit inter-columnar synchronization which reflectsglobal stimulus properties[ J]. Nature,1989,338(6213) : 334-337.
  • 10Eckhom R, Reitboeck HJ, Arndt M , et al. Feature linking viasynchronization among distributed assemblies : Simulations ofresults from cat visual cortex[ J]. Neural Computation,1990,2(3 ) : 293 -307.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部