期刊文献+

CNT-TiO_2复合物的制备及其乳液催化苯甲醇选择氧化 被引量:3

Preparation of ruthenium-loaded CNT-TiO_2 nanohybrids and their catalytic performance for the selective oxidation of benzyl alcohol
下载PDF
导出
摘要 以CNTs为基质,钛酸异丙酯为钛源,采用水热法制备CNT-TiO2复合物。采用扫描电子显微镜和X射线衍射等技术手段研究CNT-TiO2复合物的形貌和晶型结构特征,通过光学显微镜等技术手段研究TiO2、CNT-TiO2固体纳米颗粒形成的乳液体系的特征。以苯甲醇选择氧化制备苯甲醛为探针反应,研究浸渍法所制负载型钌基TiO2、CNT-TiO2乳液催化剂的催化反应性能,催化剂载体的乳化能力与其催化性能之间的规律性关系。结果发现:CNT-TiO2复合物的乳化能力强于TiO2颗粒,易形成乳液体积大及乳滴分布均匀的乳液体系;负载型Ru/CNT-TiO2催化剂的催化活性高于Ru/TiO2;催化剂载体的乳化能力与其催化活性密切相关,载体的乳化能力越强催化活性越高;CNT-TiO2复合物在苯甲醇选择氧化反应体系中起到了催化剂载体和固体乳化剂的双重作用。 CNT-TiO2 nanohybrids were synthesized using CNTs as a substrate and isopropyl titanate as a titanium source by a hydrothermal method. The nanohybrids were characterized by SEM and XRD, and their dispersion ability as an emulsion was investigated by optical microscopy. Ruthenium was loaded onto TiO2 and the nanohybrids by an impregnation method, and their catalytic performance was evaluated by the selective oxidation of benzyl alcohol to benzylaldehyde. The mechanism involved in the reaction was proposed. Results show that the dispersion ability of the CNT-TiO2 nanohybrids, judged by the numbers of uniform oil droplets in water per unit liquid volume, is better than that of TiO2. The catalytic activity and selectivity of the Ru/CNT-TiO2 for the selective oxidation reactions are higher than for Ru/TiO2 , indicating that they are closely related to the dispersion ability of the catalysts as emulsions.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2013年第4期289-294,共6页 New Carbon Materials
基金 国家自然科学基金(U1203292) 大连市科技计划项目(2011A15GX023) 教育部博士点基金项目(20120041110020)~~
关键词 CNT—TiO2复合物 苯甲醇氧化 乳液催化 CNT-TiO2 nanohybrids Selective oxidation of henzyl alcohol Emulsion catalysis
  • 相关文献

参考文献20

  • 1Yadav GD, Mistry CK. Oxidation of benzyl alcohol under a syn- ergism of phase transfer catalysis and heteropolyacids[J]. Jour- nal of Molecular Catalysis A: Chemical, 2001, 172 ( 1-2 ) : 135- 149.
  • 2Wang XM, Wu GJ, Guan NJ, et al. Supported Pd catalysts for solvent-free benzyl alcohol selective oxidation: Effects of calcina- tion pretreatments and reconstruction of Pd sites [ J ]. Applied Catalysis B: Environmental, 2012, 115-116(0) : 7-15.
  • 3Dan IE, Philip L, Benjamin SE, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 Catalysts [J]. Science, 2006, 311 (5759) : 362-365.
  • 4Zhou CM, Chert YT, Guo Z, et al. Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide [ J]. Chemical Communications, 2011, 47 (26) : 7473-7475.
  • 5Tamiolakis I, Lykakis IN, Katsoulidis AP, et al. Ordered meso- porous Cr2 03 frameworks incorporating Keggin-type 12-phospho- tungstic acids as efficient catalysts for oxidation of benzyl alco- hols [ J ]. Journal of Materials Chemistry, 2012, 22 ( 14 ) : 6919-6927.
  • 6Yang XM, Wang XN, Liang CH, et al. Aerobic oxidation of al- cohols over Au/TiO2 : An insight on the promotion effect of wa- ter on the catalytic activity of Au/TiO2 [ J]. Catalysis Communi- cations, 2008, 9 (13) :2278-2281.
  • 7Crossley S, Faria J, Shen M, et al. Solid nanoparticles that cata- lyze biofuel upgrade reactions at the water/oil interface [ J]. Sci- ence, 2010, 327 (5961) :68-72.
  • 8Shen M, Resasco DE. Emulsions stabilized by carbon nanotube silica nanohybrids [J]. Langmuir, 2009, 25: 10843-10851.
  • 9Yu H, Zhang Y, Fu XB, et al. Deactivation and regeneration of RuO2 · xH2O/CNT catalyst for aerobic oxidation of benzyl alcohol [ J ]. Catalysis Communications, 2009, 10 ( 13 ) : 1752-1756.
  • 10Villa A, Plebani M, Schiavoni M, et al. Tuning hydrophilic properties of carbon nanotubes: A challenge for enhancing se- lectivity in Pd catalyzed alcohol oxidation [ J ]. Catalysis To- day, 2012, 18(1) : 76-82.

二级参考文献44

  • 1Vamathevan, V, Amal R, Beydoun D, et al. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles [J]. J Photochem Photobiol A: Chem, 2002, 148: 233-245.
  • 2Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution : kinetic and mechanistic investigations[ J].Appl Catal B : Environ, 2004, 49 : 1- 14.
  • 3Muruganandham M, Shobana N, Swaminathan M. Optimization of solar photocatalytic degradation conditions of reactive yellow 14 azo dye in aqueous TiO2[ J]. J Mol Catal A: Chem, 2006, 246: 154-161.
  • 4Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts [J]. J Hazard Mater, 2007, 141 : 581-590.
  • 5Habibi M H, Hassanzadeh A, Mahdavi S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions[ J]. J Photochem Photobiol A: Chem, 2005,172: 89-96.
  • 6Wu C H. Comparison of azo dye decolorization efficiency using Uv/single semiconductor and Uv/coupled semiconductor systems[J]. Chemosphere, 2004, 57: 601-608.
  • 7Muruganandham M, Swaminathan M. Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension[J]. Sol Energy Mater Sol Cells, 2004, 81 : 439-457.
  • 8Oh W C, Jung A R, Ko W B. Preparation of fullerene/TiO2 composite and its photocatalytic effect[ J]. J Ind Engin Chem, 2007, 13: 1208-1214.
  • 9Oh W C, Chert M L. Synthesis and characterization of CNT/ TiO2 composites thermally derived from MWCNT and titanium (IV) n-butoxidel J]. Bull Korean Chem Soc, 2008, 29: 159- 164.
  • 10Zhang F J, Chen M L, Oh W C, Synthesis and characterization of CNT/TiO2 photoelectrocatalytic electrodes for methlene blue degradation[ J]. Mater Res Soc Korea, 2008, 18 : 583-591.

共引文献10

同被引文献38

  • 1张婉萍,郭奕光.Pickering乳化剂在化妆品中的应用[J].日用化学品科学,2006,29(9):33-33. 被引量:9
  • 2Lu H Y, Jiang Z X, Li C, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis. Chem Commun, 2007, (2): 150-152.
  • 3Crossley S, Faria J, Resasco D E, et al. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science, 2010, 327: 68-72.
  • 4Yang X M, Fan X M, Qiu J S, et al. Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets. Appl Catal A Gen, 2010, 382: 131-137.
  • 5Shi D C, Faria J, Resasco D E, et al. Enhanced activity and selectivity of Fischer-Tropsch synthesis catalysts in water/oil emulsions. ACS Cataly, 2014, 4: 1944-1952.
  • 6Binks B P. Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci, 2002, 7: 21-41.
  • 7Ramsden W. Seperation of solids in the surface-layers solution and "suspensions". Proc R Soc London, 1903, 72: 156-164.
  • 8Pickering S U. Emulsions. J Chem Soc Trans, 1907, 91: 2001-2021.
  • 9Binks B P, Rodrigues J A. Inversion of emulsions stabilized solely by ionizable nanoparticles. Angew Chem Int Ed, 2005. 44: 441-444.
  • 10Thieme J, Abend S, Lagaly G. Aggregation in Pickering emulsions. Colloid Polym Sci, 1999, 277: 257-260.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部