期刊文献+

寻求多项式系统在开超长方体中的实零点

Finding real zeros of polynomial system in open hypercuboid
下载PDF
导出
摘要 对于给定的一个n元实多项式系统P和Rn中一个开超长方体S,给出了一个有效算法,使得在ZeroR(P)∩S的每一个半代数连通分支上能找到至少一个零点。为精确起见,所找的实零点通过所谓的区间有理单元表示来描述。为处理实例,有关算法在Maple软件平台上被编制成一个通用程序。 For a system P of polynomials over R in n variables and an open hypercuboid S in Rn,where R is the field of real numbers,we present an algorithm for finding at least one real zero in each semi-algebraically connected component of ZeroR (P) ∩ S.In order to represent accurately the resulting real zeros,we adopt the so-called rational univariate representations.Furthermore,we give another algorithm for deciding whether the resulting points belong to the hypercuboid S.With the aid of the computer algebraic system Maple,these algorithms are made into a general program.
作者 曾广兴 胡兴
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2013年第3期205-214,227,共11页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11161034) 江西省教育厅科技项目(GJJ12012)
关键词 多项式系统 实零点 超长方体 有理单元表示 半代数连通分支 严格的临界点 吴方法 Polynomial system Real zero Open hypercuboid Rational univariate representation Semi-algebraically connected component Strictly critical point Wu's method
  • 相关文献

参考文献17

  • 1TARSKI K. A Decision Method for Elementary Alge- bra and Geometry[M]. University of California Press, 1951.
  • 2SEIDENBERG A. A New Decision Method for Ele- mentary Algebra[J]. Ann Math, 1954,60 : 365-374.
  • 3COLLINS G E. Quantifier Elimination for the Elemen tary Theory of Real Closed Fields by Cylindracal Alge- braic Decomposition[J] Lect Notes Comput Sci, 1975, 33: 85-121.
  • 4COLLINS G E. Quantifier Elimination by Cylindracal Algebraic Decomposition-Twenty Years of Progress [M]. in: Quantifier Elimination and Cylindracal Alge- hraic Decomposition. New York : Springer-Verlag, 1998: 8-23.
  • 5ROUILLIER F, ROY M F, SAFEY El I) M. Finding At Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation[ J]. Complexity, 2000,16 : 716-750.
  • 6TRAN Q N. A Symbolic-Numerical Method for a Real Solution of an Arbitrary System of Nonlinear Algebraic System[J]. Symbolic Computation, 1998,26 : 715-728.
  • 7ARBRY P,ROULLIER F,SAFEY EI D M. Real Sol- ving for Positive Dimensional Systems [J]. Symbolic Computation, 2002,34 : 543-560.
  • 8ROUILLIER F. Solving Zero-Dimensional Systems Through the Rational Univariate Representations[J]. AAECC, 1999,9 : 433-461.
  • 9ROUILLIER F. Efficient Algorithms Based on Critical Points Method [J]. in: Algorithmic and Quantitative Real Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 60. Amer Math Soc,Providence,2003 : 123 138.
  • 10LAZARD D, ROULLIER F. Solving Parametric Poly- nomial Systemsl[J]. Symbolic Computation, 2007,42 : 636-667.

二级参考文献30

  • 1GAO Xiaoshan(Institute of Systems Science, Academia Sinica,Beijing 100080, China)Shang-Ching Chou(Department of Computer Science, The Wichita State University, Wichita,KS 67208, USA).ON THE THEORY OF RESOLVENTS AND ITS APPLICATIONS[J].Systems Science and Mathematical Sciences,1999,12(S1):17-30. 被引量:3
  • 2Hagglof K, Lindberg P O, Stevenson L. Computing global minima to polynomial optimization problems using Grobner bases. J Global Optimization, 1995, 7:115-125.
  • 3Uteshev A Y, Cherkasov T M. The search for the maximum of a polynomial. J Symbolic Comput, 1998, 25:587-618.
  • 4Parrilo P A, Sturmfels B. Minimizing polynomial functions. In: Algorithmic and quantitative real algebraic geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 60. Providence, RI: Amer Math Soc, 2003, 83-100.
  • 5Hanzon B, Jibetean D. Global minimization of a multivariate polynomial using matrix methods. J Global Optimization, 2003, 27:1-23.
  • 6Nie J, Demmel J, Sturmfels B. Minimizing polynomials via sums of squares over the gradient ideal. Math Program Ser A, 2006, 106:587-606.
  • 7Guo F, Safey E I, Din M, et al. Global Optimization of Polynomials Using Generalized Critical Values and Sums of Squares. ISSAC, Munich, 2010.
  • 8Wu W T. Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving and Polynomial Equations-Solving. Beijing/Dordrecht-Boston-London: Science Press/Kluwer Academic Publishers, 2000.
  • 9Prestel A. Lectures on Formally Real Fields. In: Lecture Notes in Math, vol. 1093. Berlin-Heidelberg-New York: Springer-Verlag, 1984.
  • 10Lain T Y. The Theory of Ordered Fields. In: Lecture Notes in Pure and Appl Math, vol. 55. New York: M. Dekker, 1980.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部