摘要
对于给定的一个n元实多项式系统P和Rn中一个开超长方体S,给出了一个有效算法,使得在ZeroR(P)∩S的每一个半代数连通分支上能找到至少一个零点。为精确起见,所找的实零点通过所谓的区间有理单元表示来描述。为处理实例,有关算法在Maple软件平台上被编制成一个通用程序。
For a system P of polynomials over R in n variables and an open hypercuboid S in Rn,where R is the field of real numbers,we present an algorithm for finding at least one real zero in each semi-algebraically connected component of ZeroR (P) ∩ S.In order to represent accurately the resulting real zeros,we adopt the so-called rational univariate representations.Furthermore,we give another algorithm for deciding whether the resulting points belong to the hypercuboid S.With the aid of the computer algebraic system Maple,these algorithms are made into a general program.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2013年第3期205-214,227,共11页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(11161034)
江西省教育厅科技项目(GJJ12012)
关键词
多项式系统
实零点
超长方体
有理单元表示
半代数连通分支
严格的临界点
吴方法
Polynomial system
Real zero
Open hypercuboid
Rational univariate representation
Semi-algebraically connected component
Strictly critical point
Wu's method