期刊文献+

考虑空间自相关的贝叶斯事故预测模型 被引量:11

Bayesian Crash Prediction Model Based on a Consideration of Spatial Autocorrelation
下载PDF
导出
摘要 依托美国佛罗里达州Hillsborough县的数据建立区域安全预测模型.将该县重新划分为200,500,700个交通安全分析小区;提取小区层面路网特征数据、出行数据和其他影响因素,考虑空间自相关特性,建立贝叶斯空间模型;分析小区层面影响因素的安全效应,评价不同分区规模对安全因素效应的影响.对比传统的泊松模型和泊松-对数正态模型,贝叶斯空间模型具有更高的数据拟合度;分区数目越多,空间因素在随机因素中的比重越高;同一种分区下,路网特征变量的安全效应具有鲁棒性;限速大于56km的路段总长度是预测安全水平的主要指标. A regional safety prediction model was proposed based on the data from Hillsborough County, Florida, USA. By regionalizing the county into 200, 500 and 700 traffic safety analysis zones, we developed a Bayesian spatial model with consideration of spatial autocorrelation to relate crash rate to zonal factors including road network, trip generation and so on. According to the model results, the relationships were investigated between traffic safety and zone-level factors, as well as the effects of varied zoning schemes on the estimation of factor effects. Results show that compared with the traditional Poisson model and Poisson-lognormal model, the Bayesian spatial model has a better model-fitting; the greater the total zone number is, the higher the spatial effects are; the factor estimates are robust given a specific zoning scheme; the most significant factor affecting zonal safety is the total road length with speed limit over 56 km · h^-1.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期1378-1383,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(51108465) 中央高校基本科研业务费专项资金(2012ZZTS085)
关键词 事故预测模型 贝叶斯方法 交通安全分析小区 空间分析 crash prediction model Bayesian approach traffic safety analysis zone spatial analysis
  • 相关文献

参考文献14

  • 1Washington S P,Schalkwyk V I,Mitra S,et al.Incorporating safety into long-range transportation planning[R].Washington D C:Transportation Research Board,2006.
  • 2Huang H,Abdel-Aty M.Multilevel data and Bayesian analysis in traffic safety[J].Accident Analysis and Prevention,2010,42(6):1556.
  • 3Huang H,Abdel-Aty M,Darwiche A L.County-level crash risk analysis in Florida:Bayesian spatial modeling[J].Transportation Research Record,2010,2148,27.
  • 4Guevara F L D,Washington S P,Oh J.Forecasting crashes at the planning level:simultaneous negative binomial crash model applied in Tucson,Arizona[J].Transportation Research Record,2004,1897:191.
  • 5Haynes R,Jones A,Kennedy V,et al.District variations in road curvature in England and Wales and their association with road-traffic crash[J].Environment and Planning:A,2007,39(5):1222.
  • 6Hadayeghi A,Shalaby A,Persaud B.Development of planninglevel transportation safety models using full Bayesian semi parametric additive technique[J].Journal of Transportation Safety and Security,2010,2(1):45.
  • 7缪玉玲,陈小桐,李峰,等.引入交通安全对交通规划的新思考[C]//中国公路学会.第二届全国公路科技创新高层论坛论文集:上卷,北京,2004.
  • 8MIAO Yuling,CHEN Xiaotong,LI Feng,et al.The new thinking of introducing traffic safety on transportation planning[C]//Papers of the Second National Highway Science and Technology Innovation Forum.Beijing:Contemporary China Publishing House,2004:58-63.
  • 9唐珏琳.城市规划中的交通安全因素分析[J].公路与汽运,2007(4):47-48. 被引量:7
  • 10TANG Juelin.Factor analysis of traffic safety in urban planning[J].Highways and Automotive Applications,2007(4):47.

二级参考文献5

共引文献6

同被引文献145

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部