期刊文献+

边缘节点的自适应半径调整算法

Adaptive Radius Adjustment Algorithm for Edge Nodes
下载PDF
导出
摘要 降低覆盖冗余度是提高无线传感器网络覆盖度的一种措施.在DCAC(Dynamicadaptive coverageadjustingscheduling)的算法的基础上,给出了边缘节点和局部全约束状态的定义,并且提出了边缘节点的自适应半径调整的算法.与DCAC算法进行比较其仿真结果表明,无线传感器网络的覆盖冗余度相对降低,提高了网络的覆盖度,并且活跃节点的个数相对减少. The lower coverage redundancy is a kind of measures to improve the wireless sensor network coverage. In this paper, the edge nodes and local full constraint condition are defined. At the same time, this paper put forward the edge nodes adaptive radius adjustment algorithm based on the algorithm of DACA(Dynamie adaptive coverage adjusting scheduling). Finally, the algorithm of DACA joins in the algorithm of this paper and then eompared with the DACA algorithm. The simulation results show that coverage redundancy of the wireless sensor network rela- tively lower, the network coverage improved and the number of active nodes relatively less.
作者 韩春延
出处 《淮阴师范学院学报(自然科学版)》 CAS 2013年第2期129-134,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 覆盖冗余度 边缘节点 半径调整 无线传感器网络 coverage redundancy edge nodes radius adjustment wireless sensor network
  • 相关文献

参考文献11

  • 1马祖长,孙怡宁,梅涛.无线传感器网络综述[J].通信学报,2004,25(4):114-124. 被引量:463
  • 2王汝传,孙力娟.无线传感器网络技术及其应用[M].人民邮电出版社,2011.
  • 3David E C, Wei H, Wireless sensor networks [J]. Communications of ACM, 2004, 47(6): 30- 33.
  • 4Bonnet P, Gehrke J, Seshadri P. Querying the physical world [J]. IEEE Personal Communication, 2007, 7(5): 10- 15.
  • 5Akyildiz I F, Su W, Sankarasubramaniam Y. Wireless sensor Networks: a Survey [J]. Computer Networks, 2002, 38(4): 393 - 422.
  • 6Bai X L, Kumars, Xuan D, et al. Deploying wireless sensors to achieve both coverage and connectivity [M] .//Proc of the 7th ACM International Symposium on Mobile Ad hoc Networking and Computing. New York: Association for Computing Machinery, 2006:131 - 142.
  • 7Kumars, Laith, Arora A. Barrier coverage with wireless sensors [M] .//Proc of the llth Annual International Conference on Mo- bile Computing and Networking. New York: Association for Computing Machinery, 2005: 284- 298.
  • 8Liu B Y, Dousseo, Wang J. et al. Strong barrier coverage of wireless sensor networks [M] .//Proc of the 9th ACM International Symposium on Mobile Ad hoc Netwoking and Computing. New York: Association for Computing Machinery, 2008:411 - 420.
  • 9韩志杰,吴志斌,王汝传,孙力娟,肖甫.新的无线传感器网络覆盖控制算法[J].通信学报,2011,32(10):174-184. 被引量:32
  • 10Woehrlem, Brockhoffd, Hohmt, et al. Investigating Coverage and Connectivety Trade Offs in Wireless Sensor Netwoks: the Ben- efits of MOEAS, TIK Report 294 [ R]. Zurich: Computer Engineering and Networks Lab, ETH Zurich, 2008.

二级参考文献54

  • 1CHENG W F, L I Mo, L IU K B, et al. Sweep coverage with mobile sensors[A]. Proc of IEEE International Symposium on Parallel and Distributed Processing[C]. Washington DC: IEEE Computer Society, 2008: 1-9.
  • 2MEGUERDICHIAN S, KOUSHANFAR F, POTKONJAK M, et al. Coverage problem in wireless ad-hoc sensor networks[A]. IEEE INFOCOM, 2001 [C]. Anchorage: IEEE Press, 2001.1380-1387.
  • 3MEGERIANS, KOUSHANFARF, POTKONJAK M, et al. Worst and best-case coverage in sensor networks[J]. IEEE Trans on Mobile Computing, 2005, 4(1): 84-92.
  • 4HEFEEDA M, BAGHERI M, RANDOMISED K. Coverage argorithms for dense sensor networks[A]. INFOCOM 2007.26th IEEE International Conference on Computer Communications[C]. IEEE 6-12 May, 2007.2376-2380.
  • 5SANTIP, BLOUGHDM. The critical transmitting range for connectivity in sparse wireless ad hoc networks[J]. IEEE Trans on Mobile Computing, 2003, 2(1):25-39.
  • 6WU J, YANG S. Coverage issue in sensor networks with adjustable ranges[A]. Proceedings of 2004 International Workshop on Mobile and Wireless Networking (MWN in conjunction with ICPP'04)[C]. Montreal, Quebec, Canada, 2004.61-68.
  • 7PODURI S, PATTEM S, KRISHNAMACHARI B, A Unifying Framework for Tunable Topology Control in Sensor Networks[R]. Technical Report, CRES-05-004, University of Southern California, 2005.1-15.
  • 8WOEHRLEM, BROCKHOFFD, HOHMT, et al. Investigating Coverage and Connectivity Trade Offs in Wireless Sensor Networks: the Benefits of MOEAs, TIK Report 294[R]. Zurich: Computer Engineering and Networks Lab, ETH Zurich, 2008.
  • 9HEFEEDAM, BAGHERIM. Efficient K-Coverage Algorithms for Wireless Sensor Networks[D]. Vancouver: Simon Fraser University, 2006.
  • 10SIQUEIRAIG, RUIZLB, LOUREIROAAF, et al. Coverage area management for wireless sensor networks[J]. International Journal of Network Management, 2007, 17 (1): 17-31.

共引文献492

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部