期刊文献+

一个阿贝尔积分根的数目的下界 被引量:1

A Lower Bound for the Number of Zeroes of an Abelian Integral
下载PDF
导出
摘要 研究了一个近哈密尔顿系统的阿贝尔积分孤立零点的最大个数的下界,由此给出了该系统最大数目极限环的下界.对于系统=H(x,y)/y(1+x)+εP(x,y),=H(x,y)x(1+x)+εQ(x,y),其中H(x,y)=y2/2+x2k/(2k),k≥1是一个整数,ε是一个小参数且P和Q是次数至多为n的关于x的多项式.利用霍尔普夫极限环分支理论,得到Z(1,2)=1,Z(1,3)=1,其中Z(n,k)为M(h)最大独立根的个数. In this paper a polynomial near-Hamiltonian system is studied,where a lower bound for the maximum number of isolated zeroes of the corresponding Abelian integral is given,which gives a lower bound for the maximum number of limit cycles.a polynomial near-Hamiltonian system x=aH(x,y)/ay(1+x)+εP(x,y),y=aH(x,y)ax(1+x)+εQ(x,y),where H(x,y) = y^2/2 + x^2k/(2k);k was studied 1 is an integer number,ε is a small parameter and P and Q are polynomials in x of degree at most n.By using a general theorem on Hopf bifurcation of limit cycles,that Z(1,2) = 1,Z(1,3) = 1;where Z(n,k) denotes the maximum number of isolated zeroes of the integral M(h).
作者 严冬梅
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2013年第2期67-71,共5页 Journal of Nantong University(Natural Science Edition) 
基金 南通大学自然科学基金项目(11Z059)
关键词 阿贝尔积分 零点 下界 极限环 Abelian integral zero lower bound limit cycle
  • 相关文献

参考文献15

  • 1Hilbert D. Mathematical problems [J]. Bull Amer Math Soc,1902, 8:437-479.
  • 2Christopher C J,Lloyd N G. Polynomial systems : A lowerbound for the Hilbert numbers[J]. Proc R Soc Lond Ser A,1995,450(1938):219-224.
  • 3Ilyashenko Yu. Centennial history of Hilbert's 16th problem[J]. Bull Amer Math Soc, 2002,39(3) :301-354.
  • 4Levinson N, Smith 0 K. A general equation for reiaxationoscillations [J], Duke Math Journal,1942,9(2) :382-403.
  • 5Borodzik M,Zoladek H. Small amplitude limit cycies forthe poiynomial Lienard system [ J]. Journal of DifferentialEquations, 2008, 245(9) :2522-2533.
  • 6Chen Xiudong,Uiber J,Zhang Zhifen. Sufficient conditionsfor the existence of at least n or exactly n limit cycles forthe Lienard differential systems [ J]. Journal of DifferentialEquations,2007, 242 (1):11 -23.
  • 7Xiao Dongmei,Zhang Zhifen. On the existence and unique-ness of limit cycles for generalized Lienard systems [ J].Journal of Mathematical Analysis and Applications,2008,343(1):299-309.
  • 8Lynch S. Limit cycies of generalized Li6nard equations [J].Applied Mathematics Letters. 1995,8(6) : 15-17.
  • 9Giacomini H S,Neukirch S. Algebraic approximations tobifurcation curves of limit cycies for the Lienard equation[J]. Physics Letters A, 1998,244(1):53-58.
  • 10Li Jibin. Hilbert's 16th problem and bifurcations of planarpoly-nomial vector fields[J]. International Journal of Bifur-cation and Chaos, 2003,13(1):47-106.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部