期刊文献+

芋叶超疏水超亲油性能及应用 被引量:5

Super-hydrophobic and Super-oleophilic Properties of Taro Leaves and Their Application
下载PDF
导出
摘要 通过静态接触角(CA)和扫描电子显微镜(SEM)分析了芋叶的超疏水超亲油性能.考察了不同处理温度下芋叶的饱和吸油率、缓释保油率以及离心保油率.结果表明,芋叶下表面具有超疏水性能,其静态水接触角为157.1°(滚动角小于3°),远大于上表面静态水接触角(109.1°).不同温度处理的芋叶的饱和吸油率的变化呈现一定规律,在200℃下干燥的芋叶具有最高饱和吸油率(8.1 g/g).芋叶对难挥发性的机油固定能力较强,并且在较高转速下对机油仍具有较高的离心保油率. The super-hydrophobic and super-oleophilic properties of taro leaves and their application were reported. The reasons that taro leaves possess super-hydrophobic and super-oleophilic properties were analyzed by static contact angle (CA) and scanning electron microscopy (SEM). The saturated oil absorption rate, sustained release and centrifugal oil retention of taro leaves dried at different temperatures were measured and analyzed by weighing method, sustained release property and centrifugation etc. The results show that the reverse side of the taro leaf is super-hydrophobie and its static water contact angle can reach 157.1° which is much larger than that of the front one( 109. 1°) , and the sliding angles are not larger than 3°. It is also observed that the change of saturated oil absorption rate for the taro leaves shows certain regularity, and the highest saturated oil absorption( 8. 1 g/g) was obtained while the taro leaves dried at 200 ~C. Taro leaves own different capacity on fixing various oil spill. It can be known from results that taro leaves have strong capacity on fixing low volatile oil material and high centrifugal oil retention at high rotate speed.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第9期2191-2195,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21171001 21173001) 国家级大学生创新创业训练计划(批准号:cxcy2012032)资助
关键词 芋叶 超疏水 超亲油 饱和吸油率 保油率 Taro leaf Super-hydrophobic Super-oleophilic Saturated oil absorption Oil retention
  • 相关文献

参考文献24

  • 1Jin H. X., Dong B., Wu B., Zhou M. H., Polym.Plast. Technol. Eng., 2012, 51(2), 154-159.
  • 2Wu J., Wang N., Wang L., Dong H., Zhao Y., Jiang L., ACS. Appl. Mater. Interfaces, 2012, 4(6), 3207-3212.
  • 3Zhu Q., Pan Q. M., Liu F. T., J. Phys. Chem. C, 2011, 115(35), 17464-17470.
  • 4Zhu H. T., Qiu S. S., Jiang W., Wu D. X., Zhang C. Y., Environ. Sci. Technol., 2011, 45(10), 4527-4531.
  • 5Yuan X. P., Chung T. C., Energy Fuels, 2012, 26(8), 4896-4902.
  • 6Chu Y., Pan Q. M., ACS. Appl. Mater. Interfaces, 2012, 4(5), 2420-2425.
  • 7Ji N. Y., Chen H., Yu M. M., Qu R. J., Wang C. H., Polym. Adv. Technol., 2011, 22(12), 1898-1904.
  • 8Choi S. J., Kwon T. H., Im H., Moon D. I., Baek D. J., Seol M. L., Duarte J. P., Choi Y. K., ACS. Appl. Mater. Interfaces, 2011, 3(12), 4552-4556.
  • 9Yu Q. B., Tao Y. L., Huang Y. P., Lin Z. Q., Zhuang Y. L., Ge L. L., Shen Y. H., Hong M., Xie A. J., Ind. Eng. Chem. Res., 2012, 51(23), 8117-8122.
  • 10Angelova D., Uzunov I., Uzunova S., Gigvoa A., Minchev L., Chem. Eng. J., 2011, 172(1), 306-311.

二级参考文献14

  • 1JIANG Lei(江雷),FENG Lin(冯琳).仿生智能纳米界面材料[M],Bei-jing:Chemical Industry Press,2007:2-43.
  • 2Sun T.,Feng L.,Gao X.,Jiang L..Acc.Chem.Res.[J],2005,38(8):644-652.
  • 3Ludmila B.,Alexandre M.E.,Andrei S.P..Appl.Mater.Interf.[J],2010,2(6):1754-1758.
  • 4Yong-Bum P.,Maesoon I.,Hwon I.,Yang-Kyu C..Langmuir[J],2010,26(11):7661-7664.
  • 5Feng L.,Song Y.,Zhai J.,Liu B.,Xu J.,Jiang L.,Zhu D..Angew.Chem.Int.Ed.[J],2003,42(7):800-802.
  • 6Wang C.,Yao T.,Wu J.,Ma C.,Fan Z.,Wang Z.,Cheng Y.,Lin Q.,Yang B..Appl.Mater.Interf.[J],2009,1(11):2613-2617.
  • 7Rioboo R.,VouéM.,Vaillant A..Langmuir[J],2008,24(17):9508-9514.
  • 8Feng L.,Li S.,Li Y.,Li H.,Zhang L.,Zhai J.,Song Y.,Liu B.,Jiang L.,Zhu D..Adv.Mater.[J],2002,14(24):1857-1860.
  • 9Feng L.,Li S.,Li Y.,Jiang L.,Zhu D.,Zhu Y.,Wang N.,Xia F.,Jiang L..Langmuir[J],2008,24(8):4114-4119.
  • 10Christian W.,Jan E.,Christian R.,Andreas S..Microsyst.Technol.[J],2011,17(8):1401-1406.

共引文献14

同被引文献81

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部