期刊文献+

基于链路同质性的应用层流量分类方法 被引量:1

Application Layer Traffic Classification Based on Link Homophily
下载PDF
导出
摘要 随着高速网络链路中数据量的剧增,以及越来越多的流行应用使用动态端口或使用加密流量通信,导致传统的网络流量分类方法失效.本文研究了应用层流量中存在的链路同质性,结合统计关联学习方法和流量传播图挖掘方法,提出了一种基于链路同质性的应用层流量分类方法.我们分析数据集中邻接链路之间的统计依赖关系并应用于网络协议识别,而不依赖于数据包载荷与网络流特征.实验结果表明,本文提出的方法能够实现超过80%的流量识别精度. With the data volume soaring in high speed network link, more and more popular applications use dynamic ports or other protocols as wrappers, leading to traditional traffic classification method less reliable. A new method is proposed based on link homophily in application layer traffic. This method combines the statistical rela- tional learning method and the trace graph digging method. The statistical dependencies between flows is analysed that they share common IP hosts in trace graph. And these dependencies are utilized to classify application layer traffic without the payloads and properties at the flow level. In all the experimental traces, our method achieves a- bove 80% accuracy.
出处 《哈尔滨理工大学学报》 CAS 2013年第4期84-88,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省普通高等学校新世纪优秀人才培养计划(1155-ncet-008) 教育部人文社科项目(11YJC740048) 黑龙江省教育科学规划课题(GBC1211062) 黑龙江省研究生创新科研项目(YJSCX2012-125HLJ)
关键词 流量分类 应用层流量 链路同质性 traffic classification application layer traffic link homophily
  • 相关文献

参考文献9

  • 1MOORE A W,PAPAGIANNAKI K.Toward the Accurate Identification of Network Applications[C].Passive and Active Network Measurement.Springer Berlin Heidelberg,2005:41-54.
  • 2LIN Y D,LU C N,LAI Y C,et al.Application Cassification Using Packet Size Distribution and Port Association[J].Journal of Network and Computer Applications,2009,32 (5):1023-1030.
  • 3CHENG G,WANG S.Traffic Classification Based on Port Connection pattern[C] //Computer Science and Service System (CSSS),2011:914-917.
  • 4GALLAGHER B,ILIOFOTOU M,ELIASSI-RAD T,et al.Link Homophily in the Application Layer and Its Usage in Traffic Classification[C] //INFOCOM,2010 Proceedings IEEE.IEEE,2010:1-5.
  • 5JIN Y,DUFFIELD N,HAFFNER P,et al.Can' t See Forest through the Trees? Understanding Mixed Network Traffic Graphs from Application Class Distribution[C] //In Proc.9th Workshop on Mining and Learning with Graphs (MLG) 2011,co-located with ACM KDD 2011,San Diego,Aug20-21,2011.
  • 6MACSKASSY S A,PROVOST F.Classification in Networked Data:A Toolkit and a Univariate Case Study[J].The Journal of Machine Learning Research,2007,8:935-983.
  • 7KEYS K,MOORE D,KOGA R,et al.The Architecture of CoralReef:an Internet Traffic Monitoring Software Suite[C] //PAM2001,Workshop on Passive and Active Measurements,RIPE.2001.
  • 8CLAFFY K C,BRAUN H W,POLYZOS G C.A parameterizable Methodology for Internet Traffic Fow Profiling[J].Selected areas in Communications,IEEE Journal on,1995,13 (8):1481-1494.
  • 9KIM H,CLAFFY K C,FOMENKOV M,et al.Internct Traffic Classification Demystified:Myths,Caveats,and the Best Practices[C] //Proceedings of the 2008 ACM CoNEXT conference.ACM,2008:11.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部