摘要
A drag coefficient(C_d) inversion method is introduced to study the variations of the drag coefficient for orbital satellites with spherical geometry.Drag coefficients of the four micro satellites in the Atmospheric Neutral Density Experiment(ANDE) are compiled out with this new method. The Lomb-Scargle Periodgram(LSP) analysis of the four ANDE satellites' C__d series has shown that there are obvious 5,7,9,and 27 days' period in those data.Interesting results are found through comparing the LSP analysis with series of the daily solar radio flux at 10.7cm(F_(10.7) index),the Ap index,and the daily averaged solar wind speed at 1AU.All series in the same time interval have an obvious period of about 27 days,which has already been explained as the association with the 27 days' solar rotation.The oscillating periods less than 27 days are found in series of C_D,Ap and solar wind speed at 1 AU,e.g.,the 5,7,9 days period.However,these short periods disappeared in the time series of F_(10.7) index.The same periodicities of 5,7,9 days in Ap and solar wind are presented at the same time interval during the declining phase of solar cycle 23.While in the ascending phase of solar cycle 24,these short oscillations are not so obvious as that in the declining phase of solar cycle 23.These results provide definite evidence that the C_d variations with period of 5,7 and 9 days are produced by a combination of space weather effects caused by the solar wind and geomagnetic activity.
A drag coefficient (CD) inversion method is introduced to study the variations of the drag coefficient for orbital satellites with spherical geometry. Drag coefficients of the four micro satellites in the Atmospheric Neutral Density Experiment (ANDE) are compiled out with this new method. The Lomb-Scargle Periodgram (LSP) analysis of the four ANDE satellites' CD series has shown that there are obvious 5, 7, 9, and 27 days' period in those data. Interesting results are found through comparing the LSP analysis with series of the daily solar radio flux at 10.7cm (F10.7 index), the Ap index, and the daily averaged solar wind speed at 1 AU. All series in the same time interval have an obvious period of about 27 days, which has already been explained as the association with the 27 days' solar rotation. The oscillating periods less than 27 days are found in series of CD, Ap and solar wind speed at 1 AU, e.g., the 5, 7, 9 days period. However, these short periods disappeared in the time series of F10.7 index. The same periodicities of 5, 7, 9 days in Ap and solar wind are presented at the same time interval during the declining phase of solar cycle 23. While in the ascending phase of solar cycle 24, these short oscillations are not so obvious as that in the declining phase of solar cycle 23. These results provide definite evidence that the CD variations with period of 5, 7 and 9 days are produced by a combination of space weather effects caused by the solar wind and geomagnetic activity.
出处
《空间科学学报》
CAS
CSCD
北大核心
2013年第5期525-531,共7页
Chinese Journal of Space Science
基金
Supported by the National Nature Science Foundation of China(40904080)
the Advance Research Foundation of PLA University of Science and Technology