期刊文献+

纳米尺度材料有效导热率的界面效应 被引量:1

Effect of boundary of effective thermal conductivity for nanoscale material
下载PDF
导出
摘要 为了研究界面效应对纳米尺度材料内声子热输运的影响,利用格子波尔兹曼法模拟二维矩形结构二氧化硅纳米材料内声子热输运,模拟过程考虑了边界面散射对声子平均自由程的影响.结果表明,相对镜反射的情况,漫反射界面明显降低了纳米尺度材料的导热率,边界面存在界面效应;随着镜反射因子的减小,材料的有效导热率降低;提高纳米尺度固体材料界面的粗糙度,界面热阻增强,有助于降低导热率. To study the influence of boundary effect on phonon heat transport in nanoscale material, the phonon heat transport in silicon dioxide material for rectangular geometry is simulated, in which the effect of boundary scattering on phonon mean free path is considered. The results show that the effective thermal conductivity in nanoscale material reduces more obviously for diffuse reflection than the case of specular reflection, and the effect of boundary exists at the boundary. The effective thermal conductivity reduces with the decrease of specularity factor. The increasing of boundary roughness in nanoscale material, which enhances the thermal resistance of boundary, is in favor of the reduction of the thermal conductivity.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第7期68-71,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(51176038) 国家自然科学基金委创新研究群体(51121004)
关键词 格子玻尔兹曼方法 纳米尺度 声子输运 界面效应 导热率 Lattice Boltzmann method nanoscale Phonon transport Effect of boundary Thermalconductivity
  • 相关文献

参考文献13

  • 1LADRY E S, MCGAUGHEY A J H. Effect of film thickness on the thermal resistance of confined semiconductor thin films [ J ]. Journal of Applied Physics, 2010, 107(1) : 013521.
  • 2NICHOLAS L, CHARIKLIA L. Nanoengineering Strong Silica Aeorgels [J]. Nanoletters, 2002, 2(9) : 957 - 960.
  • 3RIGACCI A, ACHARD P, EHRBURQER-DOLLE F, et al. Structural investigation in monolithic silica aerogels and thermal properties [ J ]. Jounral of Non-Cyrstalline Solids, 1998, 225 (Apt II ) : 260 - 255.
  • 4高庆福,张长瑞,冯坚,武纬,冯军宗.氧化铝气凝胶复合材料的制备与隔热性能[J].国防科技大学学报,2008,30(4):39-42. 被引量:22
  • 5IAZUMDER S, MAJUMDAR A. Monte carlo study of phonon transport in solid thin films including dispersion and polarization [J]. Journal of Heat Transfer, 2001, 123(4) : 749 -759.
  • 6冯晓利,李志信,过增元.电介质薄膜导热系数的尺寸效应[J].清华大学学报(自然科学版),2001,41(8):83-86. 被引量:4
  • 7LU X, CHU J H. Phonon heat transport in silicon nanowires [ J ]. European Physical Journal B, 2002, 26 ( 1 ) : 375 - 378.
  • 8王赞,陈云飞,贺赟晖,陈敏华.基于蒙特卡洛法的硅纳米线热导率研究[J].东南大学学报(自然科学版),2009,39(2):245-249. 被引量:3
  • 9王赞,赵睿杰,陈云飞.变截面纳米线声子输运蒙特卡洛模拟[J].中国科学:技术科学,2010,40(3):231-236. 被引量:2
  • 10RODRIGO E, BRIAN S, CRISTINA A. Lattice boltzmann modeling of subcontinuum energy transport in crystalline and amorphous microelectronic devices [ j ]. Journal of Electronic Packaging, 2006, 128 ( 2 ) : 115 -124.

二级参考文献44

  • 1杨海龙,倪文,孙陈诚,胡子君,陈淑祥.硅酸钙复合纳米孔超级绝热板材的研制[J].宇航材料工艺,2006,36(2):18-22. 被引量:33
  • 2Cahill D G, Ford W K, Mahan G D, et al. Nanoscale thermal transport [J].Journal of Applied Physics, 2003,93(2): 793 -818.
  • 3Majumdar A. Thermoelectricity in semiconductor nanostructures [J]. Science, 2004,303 (5659) :777 - 778.
  • 4V R, Siivola E, Colpitts T, et al. Thinfilm thermoelectric devices with high room-temperature figure of merit [J]. Nature,2001,413 (6856) : 597 - 602.
  • 5Callaway J. Model for lattice thermal conductivity at low temperatures[J].Physical Review, 1959,113 (4) : 1046 - 1051.
  • 6Holland M G. Analysis of lattice thermal conductivity [J].Physical Review, 1963,132 ( 6 ) : 2461 - 2471.
  • 7Kurosawa T. Monte Carlo simulation of hot electron problems [ C ]//Proceedings of the International Conference on the Physics of Semiconductor. Jpn: J Phys Soc, 1966:424 - 427.
  • 8Budd H. Path variable formulation of the hot carrier problem [J]. Physical Review, 1967,158 ( 3 ) : 645 - 705.
  • 9Klitsner T, van Cleve J E, Fischer H E, et al. Phonon radiative heat transfer and surface scattering [J].Physical Review B, 1988,38( 11 ) : 7576 - 7594.
  • 10Peterson R B. Direct simulation of phonon-mediate heat transfer in a Debye crystal[J]. Journal of Heat Trans-fer,1994,116(4) : 815 -822.

共引文献29

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部