期刊文献+

西罗莫司诱导K562细胞γ珠蛋白基因表达机制探讨

Mechanisms of Sirolimus Inducing Expression of γ-Globin Gene in K562 Cells
原文传递
导出
摘要 目的探讨西罗莫司诱导K562细胞γ珠蛋白基因表达的作用机制。方法终浓度10 nmol·L-1西罗莫司处理K562细胞3 d,同时设立阳性药物(丁酸钠)对照、二甲基亚砜对照和空白对照。采用Western blot方法检测p38MAPK。采用基于Real time PCR的染色质免疫共沉淀方法分析γ珠蛋白基因启动子乙酰化组蛋白H3水平。结果经西罗莫司处理的K562细胞的磷酸化p38MAPK相对水平及γ珠蛋白基因启动子乙酰化组蛋白H3水平分别比空白对照细胞升高2.8和9.8倍、分别比二甲基亚砜处理组升高2.9和9.1倍,而与丁酸钠处理的细胞无显著性差别。SB203580预处理K562细胞可中止西罗莫司升高磷酸化p38MAPK及γ珠蛋白基因启动子乙酰化组蛋白H3的作用。结论西罗莫司诱导K562细胞γ珠蛋白基因表达的机制与其激活p38MAPK信号和上调启动子乙酰化组蛋白H3有关。 OBJECTIVE To investigate the mechanisms of sirolimus inducing 7-globin gene expression in K562 cells. METHODS K562 cells were cultured in the presence of 10 nmol · L-l sirolimus, butylate, or DMSO for 3 d. Western blot and real time PCR-based chromatin immunoprecipitation was employed to measure the levels of p38MAPK and acetylated histone H3 (acH3) at 7-globin gene promoter regions, respectively. RESULTS In K562 cells with l0 nmol · L-j sirolimus treatment, phospholylated p38MAPK (p-p38MAPK) was 2. 8-fold greater and acH3 was 9.8-fold greater than that in untreated K562 ceils, and there was a 2. 9- fold in p-p38MAPK and a 9. 1-fold in acH3 increase comparing with K562 cells treated with DMSO, no significant difference in p- p38MAPK and acH3 level was found between cells treated with sirolimus and with butylate. SB203580 completely abolished induction of p38MAPK activation and acH3 increase by sirolimus. CONCLUSION Our results indicate that sirolimus actives p38MAPK signal and increases acetylation of H3 at 7-globin gene promoter regions, which may be the mechanisms of induced expression of 7-globin genes by sirolimus in K562 cells.
出处 《中国药学杂志》 CAS CSCD 北大核心 2013年第16期1369-1373,共5页 Chinese Pharmaceutical Journal
基金 广东省自然科学基金项目资助(S2011040003573)
关键词 西罗莫司 γ珠蛋白基因 P38MAPK 组蛋白 乙酰化 sirolimus y-globin gene p38MAPK histone acetylation
  • 相关文献

参考文献16

  • 1MISCHIATI C, SERENI A, LAMPRONT! I, et al. Rapamycin- mediated induction of 3,-globin mRNA accumulation in human er- ythroid cells [J]. Br J Haematol, 2004, 126(4):612-621.
  • 2FIBACH E, BIANCHI N, BORGA.TTI M, et al. Effects of rapa- mycin on accumulation of tx-, 13% and 3,-globin mRNAs in ery- throid precursor ceils from β-thalassaemia patients [ J ]. Eru J Haematol, 2006, 77 (5) :437-441.
  • 3ZUCCATO C, BIANCHI N, BORGATTI M, et al. Everolimus is a potent inducer of erythroid differentiation and β-globin gene ex- pression in human erythroid cells [ J]. Acta Haematol, 2007, 117(3) :168-176.
  • 4陈剑锋,钱新华,赵丹华,千新来.染色质免疫共沉淀分析丁酸钠对γ珠蛋白基因启动子组蛋白乙酰化的作用[J].南方医科大学学报,2010,30(6):1222-1225. 被引量:4
  • 5KURTZ J F, RAV-COQUARD I. PI3 kinase inhibitors in the clinic : An update [ J ] . Anticancer Res, 2012, 32 ( 7 ) : 2463- 2470.
  • 6WITr O, SAND K, PEKRUN A. Butyrate-induced erythroid dif- ferentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways [ J]. Blood, 2000, 95(7) :2391-2396.
  • 7WITT O, MONKEMEYER S, KANBACH K, et al. Induction of fetal hemoglobin synthesis by valproate: Modulation of MAP ki- nase pathways [J]. Am J Hematol, 2002, 71 ( 1 ) :45-47.
  • 8PACE B S, QIAN X H, SANGERMAN J, et al. p38 MAP ki- nase activation mediates γ-globin gene induction in erythroid pro- genitors [J]. Exp Hematol, 2003, 31 ( 11 ) :1089-1096.
  • 9MABAERA R, WEST R J, CONING S J, et al. A cell stress sig- naling model of fetal hemoglobin induction: What doesn't kill red blood cells may make them stronger [ J ]. Exp Hematol, 2008, 36 (9) : 1057-1072.
  • 10JAZIREHI A R, WENN P B, DAMAVAND M. Therapeutic im- plications of targeting the PI3 Kinase/AKT/roTOR signaling mod- ule in melanoma therapy [J]. Am J Cancer Res, 2012, 2(2) : 178-191.

二级参考文献10

  • 1Collas P, Dahl JA. Chop it, ChIP it, Check it: the current status of chromatin immunoprecipitation [J]. Front Biosci, 2008, 13: 929-43.
  • 2Pace BS, Qian XH, Sangerman J, et al. p38 MAP kinase activation mediates 7-globin gene induction in erythroid progenitors [J]. Exp Hematol, 2003, 31 ( 11): 1089-96.
  • 3Ishiguro K, Sartorelli AC. Coinduction of embryonic and adult-type globin mRNAs by sodium butyrate and trichostatin A in two murine interleukin-3-dependent bone marrow-derived cell lines [J]. Blood, 1998, 92(11): 4383-93.
  • 4Fathallah H, Portnoy G, Atweh GF. Epigenetic analysis of the human alpha- and beta-globin gene clusters [J]. Blood Cells Mol Dis, 2008, 40(2): 166-73.
  • 5Mukhopadhyay A, Deplancke B, Walhout AIM, et al. Chromatin immunoprecipitation (CHIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans [J ]. Nat Protoc. 2008, 3(4): 698-709.
  • 6Mabaera R, Richardson CA, Johnson K, et al. Development and differentiation-specific patterns of human γ- and β-globin promoter DNA methylation[J]. Blood, 2007, 110(4): 1343-52.
  • 7Haling M, Offermann S, Danker T, et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization [J]. Plant Methods, 2007, 3:11.
  • 8Fathallah H, Weinberg RS, Galperin Y, et al. Role of epigenetic modifications in normal globin gene regulation and butyrate-mediated induction of fetal hemoglobin [J]. Blood, 2007, 110(9): 3391-7.
  • 9Sangerman J, Lee MS, Yao X, et al. Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves γ-globin activation by CREB 1 and ATF-2 [J]. Blood, 2006, 108(10): 3590-9.
  • 10Blobel GA. CBP/p300: molecular integrators of hematopoietic transcription[J]. Blood, 2000, 95(3): 745-55.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部