期刊文献+

分形多孔介质中气体的非稳态扩散 被引量:6

Unsteady state gas diffusion in fractal porous media
下载PDF
导出
摘要 通过引入平均修正系数修正Fick第二扩散定律得到了描述分形多孔介质气体非稳态扩散的理论方程。基于'塞状流'扩散实验法建立了分形多孔介质非稳态扩散实验系统,对3个孔隙结构不同的分形多孔介质样品进行了非稳态扩散实验,通过实验对理论方程进行验证和修正。结果表明,Fick第二扩散定律不适用于分形多孔介质中气体非稳态扩散,分形多孔介质中气体非稳态扩散存在一定规律,且多孔介质孔隙结构不同其扩散规律不同。 An average modified coefficient was used to modify Fick's second law and a theoretical equation was established to describe unsteady state gas diffusion in fractal porous media.The experimental system for unsteady state gas diffusion in fractal porous media was based on the plug flow diffusion.Three different porous medium samples were used to verify and modify the theoretical equation.The results indicate that Fick's second law is not applicable to unsteady state diffusion in fractal porous media,and unsteady state diffusion law in porous media is same under different conditions,and diffusion law in porous media with different pore structures is different.
作者 马亮 何榕
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第9期3139-3144,共6页 CIESC Journal
基金 国家自然科学基金项目(51176096)~~
关键词 多孔介质 非稳态扩散 分形 孔隙结构 porous media unsteady state diffusion fractal pore structure
  • 相关文献

参考文献24

  • 1Dullien F A. Porous Media Fluid Transport and Pores Structures [M]. New York Academic Press, 1979.
  • 2刘辉,吴少华,孙锐,徐睿,邱朋华,李可夫,秦裕琨.快速热解褐煤焦的比表面积及孔隙结构[J].中国电机工程学报,2005,25(12):86-90. 被引量:63
  • 3韩向新,姜秀民,崔志刚,于立军.油页岩颗粒孔隙结构在燃烧过程中的变化[J].中国电机工程学报,2007,27(2):26-30. 被引量:27
  • 4Bhatia S K, Perlmutter D D. A random pore model for fluid- solid reactions ( lI ) : Diffusion and transport effects [J]. AIChEJournal, 1981, 17 (2) 247-254.
  • 5Cbristman P G, Edgar T F. Distributed pore-size model for sulfation o limestone [J]. AIChE Journal, 1983, 29 (3): 388-395.
  • 6Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three ( I ): Fractal theory of heterogeneous surfaces [ J ]. Journal o f Chemical Physics, 1983, 79 (7): 3558-3565.
  • 7Katz A J, Thompson A H. Fractal sandstone pores: implications for conductivity and pore formation [ J ]. Physical Review Letters, 1985, 54:1325-1328.
  • 8Gefen Y, Aharony A, Alexander S. Anomalous difusion on percolating clusters [J]. Phy. Rev. Lett., 1983, 50 (1) : 77-80.
  • 9Costa M, Araujo A, Silva H, et al. Scaling behavior of diffusion and reaction processes in percolating porous media [J]. PhysicalReview E, 2003, 67:061406.
  • 10Havlin S, Ben-Avraham D, Sompolinsky H. Scaling behavior of diffusion on percolation clusters [J]. Physical ReviewA, 1983, 27 (3): 1730-1733.

二级参考文献33

共引文献77

同被引文献68

  • 1朱卫兵,王猛,陈宏,韩丁,刘建文.多孔介质内流体流动的格子Boltzmann模拟[J].化工学报,2013,64(S1):33-40. 被引量:5
  • 2李小川,施明恒,张东辉.非均匀多孔介质中导热过程[J].东南大学学报(自然科学版),2005,35(5):761-765. 被引量:6
  • 3李小川,施明恒,张东辉.非均匀多孔介质有效热导率分析[J].工程热物理学报,2006,27(4):644-646. 被引量:11
  • 4周晓君,郭庆斌.牛顿流体在充满多孔介质圆管内的结构流特征[J].西安石油大学学报(自然科学版),2007,22(2):37-40. 被引量:2
  • 5Prat M.Recent Advances in Pore-Scale Models for Drying of Porous Media[J].Chem EngJ,2002,86 (1/2):153-164.
  • 6Metzger T,Tsotsas E.Network Models for Capillary Porous Media[J].ChemIngTech,2010,82(6):869-879.
  • 7Daian J F,Saliba J.Determining a Representative Pore-Network for Moisture Sorption and Migration in Cement Mortar[J].IntJHeatMass Transfer,1991,34(8):2081-2096.
  • 8Nowicki S C,Davis H T,Scriven L E.Microscopic Determination of Transport Parameters in Drying Porous Media[J].Dry Technol,1992,10(4):926-946.
  • 9Prat M.Percolation Model of Drying Under Isothermal Conditions Inporous Media[J].Int J Multiphase Flow,1993,19 (4):691-704.
  • 10Tsimpanogiannis I N,Yortsos Y C,Poulou S,et al.Scaling Theory of Drying in Porous Media[J].Phys Rev E:Stat,Nonlinear,Soft,MatterPhys,1999,59 (4):4353-4365.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部