期刊文献+

两歧双歧杆菌F-35对Caco-2细胞中α-葡萄糖苷酶活及葡萄糖转运的影响 被引量:4

Effect of Bifidobacterium bifidum F-35 on α-glucosidase enzyme activity and the transportation of glucose
下载PDF
导出
摘要 本文以Caco-2细胞建立的Transwell模型研究了两歧双歧杆菌F-35的发酵上清和细胞内容物对葡萄糖转运和α-葡萄糖苷酶活性的影响及其对α-葡萄糖苷酶(S-I)、钠-葡萄糖共转运体-1(SGLT-1)、葡萄糖转运蛋白-2(GLUT-2)基因表达的影响。结果表明,两歧双歧杆菌F-35的发酵上清和细胞内容物对α-葡萄糖苷酶活性的抑制率分别为13.3%和21.0%,对葡萄糖的转运抑制率分别为15.0%和29.7%;使S-I基因表达水平分别下调3.3倍和3.7倍,SGLT-1基因表达水平分别下调3.5倍和1.6倍,GLUT-2的基因表达水平分别下调4.4倍和1.3倍,与对照组相比均有显著性差异。研究表明,两歧双歧杆菌F-35可通过对α-葡萄糖苷酶活性和葡萄糖转运的抑制及对S-I、SGLT-1和GLUT-2 mRNA表达量的抑制,来延缓餐后碳水化合物水解和影响葡萄糖吸收,具有潜在的降血糖作用。 In this paper, the supernatant and cell free extract of Bifidobacterium bifidum F-35 inhibited the α-glucosidase activity and the glucose transporter by Caco-2 cells and mRNA expressions of α-glucosidase (S-I), sodium - glucose cotransporter 1 ( SGLT- 1 ), glucose transporter protein 2 ( GLUT - 2 ) in real - time fluorescence quantitative PCR were studied. The results showed that the α-glucosidase inhibition rate of supernatant and cell free extract was 13.3% and 21.0%,glucose transporter inhibition rate was 15.0% and 29.7%, respectively.S-I gene expression levels was reduced by 3.3 times and 3.7 times by the supernatant and cell free extract of Bifidobacterium bifidum F-35.The SGLT-1 gene expression levels was reduced by 3.5 times and 1.6 times The level of gene expression of glucose transporter protein GLUT-2 was reduced by 4.4 times and 1.3 times respectively in real-time fluorescence quantitative PCR. There was a significant difference compared with the control group. Bifidobacterium bifidum F-35 should delay postprandial carbohydrate hydrolysis and inhibit the glucose absorption by inhibiting α-glucosidase activity and reducing the S-I, SGLT- 1, GLUT-2 mRNA expression levels.Bifidobacterium bifidum F-35 had the potential effect of reducing blood glucose.Further research is needed to evaluate the antidiabetic effect in vivo.
出处 《食品工业科技》 CAS CSCD 北大核心 2013年第17期177-180,184,共5页 Science and Technology of Food Industry
基金 "十二五"国家863计划(2011AA100901)
关键词 两歧双歧杆菌F-35 CACO-2细胞 Α-葡萄糖苷酶 钠-葡萄糖共转运体-1 葡萄糖转运蛋白-2 Bifidobacterium bifidum F-35 Caco-2 cells S- I SGLT- 1 GLUT-2
  • 相关文献

参考文献18

  • 1Jain S, Saraf S.Type 2 diabetes mellitus-Its global prevalence and therapeutic strategies [ J].Diabetes and Metabolic Syndrome, 2010(4) :48-56.
  • 2蒋厚龙.健康必读浅谈糖尿病的起因及预防措施[J].健康必读,2012,11(9):525.
  • 3Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic [ J] .Nature,2001,414 :782-787.
  • 4Tolleller M.c-glucosidase inhibitors in diabetes:efficacy in NIDDM subjects [ J] .European Journal of Clinical Investigation,1994,24( 3 ) :31-35.
  • 5Hansawasdi C,Kawabata J.c-Glueosidase inhibitory effect of mulberry(Morusalba) leaves on Caco-2 [ J ]. Fitoterapia, 2006, 77:568-573.
  • 6Anurakkun N, Bhandari M, Hong G, et al. oL - Glucosidase inhibitor from Chinese aloes [ J ].Fitoterapia,2008 ,79 :456-457.
  • 7Toda M, Kawabata J, Kasai T.ct- Glucosidase inhibitors from clove ( Syzgium aromaticum ) [ J ] .Biosci Biotechnol Biochem, 2000,64 ( 2 ) :294-298.
  • 8Anurakkun N, Bhandari M, Kawabata J. a - Glucosidase inhibitors from Devil tree ( Alstonia scholaris ) [ J ] . Food Chemistry ,2007,103 : 1319-1323.
  • 9Hansawasdi C, Kawabata J, Kasai T. Hibiscus acid as an inhibitor of starch digestion in the Caco- 2 cell model system [ J]. Bioscience Biotechnology and Biochemistry, 2001,65 ( 9 ) : 2087-2089.
  • 10Zhang J - F, Zheng Y - G, Shen Y- C. Inhibitory effect of valienamine on the enzymatic activity of honeybee a-glucosidase [ J] .Pesticide Biochemistry and Physiology ,2007,87:73-77.

二级参考文献28

  • 1廖沙,谢剑炜.Caco-2细胞模型在药物体外研究中的应用[J].中国新药杂志,2005,14(4):416-419. 被引量:29
  • 2Hidalgo IJ, Raub T J, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability[J].Gastroenterology, 1989, 96: 736-49.
  • 3Buur A, Trier L, Magnusson C, et al. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers [ J ]. Int J Pharm, 1996, 129: 223 -31.
  • 4Zodl B, Zeiner M, Sargazi M, et al. Toxic and biochemical effects of zinc in Caco-2 cells[J]. J Inorg Biochem, 2003, 97: 324-30.
  • 5Zodl B, Zeiner M, Paukovits P, et al. Iron uptake and toxicity in Caco-2 cells[J]. Microchem J, 2005, 79: 393-7.
  • 6Barr WH, Riegelman S. Intestinal drug absorption and metabolism I: comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption[J]. J Pharm Sci, 1970, 69: 154-63.
  • 7Osiecka I, Porter PA, Borchardt RT, et al. In vitro drug absorption models. Ⅰ. Brush border membrane vesicles, isolated mucosal cells and everted intestinal rings: characterization and salicylate accumulation [J].Pharm Res, 1985, 2: 284-92.
  • 8Gan LL, Thakker DR. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium [J]. Adv Drug Deliv Rev, 1997, 23: 77-98.
  • 9Yamaji S, Tennant J, Tandy S, et al. Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells[J]. FEBS Lett, 2001, 507: 137-41.
  • 10Alvarez-Hemandez X, Nichols GM, Glass J. Caco-2 cell line: a system for studying intestinal iron transport across epithelial cell monolayers[J]. Biochim Biophysi Acta, 1991, 1070(1): 205-8.

共引文献21

同被引文献22

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部