期刊文献+

几个基本超几何级数变换公式的U(n+1)拓广 被引量:1

U(n+1) Extensions of Several Transformations Formulas on Basic Hypergeometric Series
原文传递
导出
摘要 应用Carlitz反演的U(n+1)形式以及级数重排技巧,建立了几个基本超几何级数变换公式的U(n+1)拓广. By applying the method of Carlitz inversion technique and series rearrangement, the purpose of this paper is to establish the U(n + 1) extensions of several transformations formulas on basic hypergeometric series.
作者 张之正 吴云
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第5期787-798,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11071107)
关键词 Carlitz反演 基本超几何级数 多变量基本超几何级数 变换公式 Carlitz inversion basic hypergeometric series U(n+1) basic hypergeometric series transformation formula
  • 相关文献

参考文献32

  • 1Andrews G.E.,q-Series:Their Development and Application in Analysis,Number Theory,Combinatorics, Physics and Computer Algebra,NSF CBMS Regional Conference Series,V.66,1986.
  • 2Andrews G.E.,Connection coefficient problems and partitions,in "Proceedings of Symposia in Pure Mathematics" (D.Ray-Chaudhuri,Ed.),1979,34:1-24.
  • 3Agarwal A.K.,Andrews G.E.,Bressoud D.M.,The Bailey lattice,J.Indian Math.Soc,1987,51:57-73.
  • 4Andrews G.E.,The Theory of Partitions,Encyclopedia of Mathematics and Applications:V.2,Addison-Wesley Pub.Company,1976.
  • 5Andrews G.E.,Askey R.,Roy R.,Special Function,Cambridge University Press,Cambridge,1999.
  • 6Bailey W.N.,Identities of the Rogers-Ramanujan type,Proc.London Math.Soc,1947,50(2):1-10.
  • 7Bhatnagar G.,Milne S.C,Generalized bibasic hypergeometric series and their U(n) extensions,Adv.Math., 1997,131:188-252.
  • 8Bhatnagar G.,Schlosser M.J.,C_n and D_n very-well-poised _(10)φ_9 transformations,Constr.Approx.,1998, 14:531-567.
  • 9Biedenharn L.C,Louck J.D.,Angular Momentum in Quantum Physics:Theory and Applications,in "Encyclopedia of Mathematics and Its Applications"(G.-C.Rota,Ed.),V.8,Addison-Wesley,Reading,MA, 1981.
  • 10Biedenharn L.C,Louck J.D.,The Racah-Winger Algebra in Quantum Theory,in "Encyclopedia of Mathematics and Its Applications"(G.-C.Rota,Ed.),V.9,Addison-Wesley,Reading,MA,1981.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部