期刊文献+

K-g-框架与子空间对偶g-框架 被引量:9

K-g-Frames and Dual g-Frames for Closed Subspaces
原文传递
导出
摘要 在Hilbert空间中定义K-g-框架,探讨K-g-框架与g-框架的一些本质差别.利用特殊闭子空间的对偶g-框架来刻画K-g-框架,给出构造特殊闭子空间对偶g-框架的一种方法,并介绍相关的K-g-框架的一些性质. We introduce the concept of if-g-frames in Hilbert spaces and study the essential distinctions between K-g-frames and g-frames.Then we characterize K-gframes by using dual g-frames of special closed subspaces and give a way to construct dual g-frames for special closed subspaces.Finally,we study some properties of K-g- frames.
作者 周燕 朱玉灿
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第5期799-806,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学数学天元基金资助项目(11226099) 福建省自然科学基金(2012J01005)资助项目 福州大学科技发展基金(2012-XY-21 2012-XQ-29) 福州大学科研启动基金(022410)资助项目
关键词 K-框架 K-g-框架 对偶 K-frames K-g-frames duality
  • 相关文献

参考文献1

二级参考文献20

  • 1Balan R, Casazza P G, Heil C, et al. Density, overcompleteness, and localization of frames, I, Theory. J Fourier Anal Appl, 2006, 12(2): 105-143.
  • 2Casazza P, Kutyniok G. Frames of subspaces. Contemp Math, 2004, 345:87-113.
  • 3Casazza P, Kutyniok G, Li S. Fusion frames and distributed processing. Appl Comput Harmon Anal, 2008, 25(2), 114 132.
  • 4Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhauser, 2003.
  • 5Christensen O, Eldar Y C. Oblique dual frames and shift-invariant spaces. Appl Comput Harmon Anal, 2004, 17(1): 48-68.
  • 6Daubecheies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions. J Math Phys, 1986, 27(5): 1271-1283.
  • 7Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
  • 8Dorfler M, Feichtinger H G, GrSchenig K. Time-frequency partitions for the Gelfand triple. Math Scand, 2006, 98(1): 81-96.
  • 9Duffin R J, Schaeffer A C. A class of nonharmonic Fourier serirs. Trans Amer Math Soc, 1952, 72:341-366.
  • 10Fornasier M. Quasi-orthogonal decompositions of structed frames. J Math Anal Appl, 2004, 289(1): 180-199.

同被引文献39

  • 1吴国昌,曹怀信,鲁大勇.波包Parseval框架的刻画及应用[J].数学学报(中文版),2015,58(1):91-102. 被引量:8
  • 2丁明玲,朱玉灿.g-框架的稳定性[J].福州大学学报(自然科学版),2007,35(3):321-325. 被引量:10
  • 3Sun W C. G- frames and g- Riesz bases [ J ]. Math Anal Appl, 2006, 322 (1) : 437 -452.
  • 4Gavruta P. Frames for operators[J]. Appl Comput Harmon Anal, 2012, 32:139 -144.
  • 5Gavruta P. On the duality of fusion frames [ J]. Math Anal Appl, 2007, 333 (2) : 871 -879.
  • 6Christensen O, Goh S S. Pairs of oblique duals in spaces of periodic functions[ J]. Adv Comput Math, 2010, 32:353 -379.
  • 7Lopez J, Han D. Optimal dual frames for erasures[ J]. Linear Algebra Appl, 2010, 432:471 -482.
  • 8Pedro G M, Mariano A R, Demetrio S. Duality in reconstruction systems[J]. Linear Algebra Appl, 2012, 436:447 -464.
  • 9Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frames[ J]. Fourier Anal Appl, 2003, 9(1) : 77 -96. Christensen O, Eldar Y C. Oblique dual frames and shift - invariant spaces [ J ]. Appl Comput Harmon Anal, 2004, 17 : 48 - 68. Eldar Y C, Werther T. General framework for consistent sampling in Hilbert spaces[ J]. Int Wavelets Multi Inf Pro, 2005, 3 ( 3 ) : 347 - 359.
  • 10Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frames[ J]. Fourier Anal Appl, 2003, 9(1) : 77 -96.

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部