摘要
本文研究了非线性作用随空间变化的玻色-爱因斯坦凝聚原子的规则与混沌空间分布.空间变化的凝聚体相位导致系统中存在稳定的原子流.对化学势为正,原子间呈排斥作用的系统,构造了系统的一级微扰通解,该通解的有界性条件包含了著名的Mel’nikov混沌判据.在系统不满足微扰条件的情况下,数值模拟表明无论凝聚原子呈混沌分布还是规则分布,原子流的增大都可以破坏凝聚原子分布的空间对称性.
This paper studies the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction.There exists a steady atomic current in the system due to the space-dependent phase of condensate.For the system with a positive chemical potential and repulsive interatomic interaction,we construct the general solution of the 1st-order equation,whose boundedness conditions contain the famous Mel’nikov chaotic criterion.When the system doesn’t satisfy the perturbation conditions,numerical simulations reveal that increasing the atomic current can destroy the spatial symmetry of the distributional structure of condensed atoms,whether the condensed atoms in a chaotic or regular distribution.
出处
《原子与分子物理学报》
CAS
CSCD
北大核心
2013年第4期623-629,共7页
Journal of Atomic and Molecular Physics
基金
湖南省教育厅项目(08C344)
低维量子结构与调控教育部重点实验室(湖南师范大学)开放课题基金(QSQC1005)