期刊文献+

基于自适应滤波的微弱GPS信号跟踪方法 被引量:2

Adaptive Filter-Based Tracking Method for Weak GPS Signal
下载PDF
导出
摘要 针对全球定位系统(GPS)传统跟踪算法在接收信号很微弱的条件下跟踪误差大,为保持跟踪精度,提出了一种新的跟踪方法。同时考虑了多普勒频移和码相位偏移量作为观测模型,然后采用自适应卡尔曼滤波算法,有效减轻了系统噪声和观测噪声对信号跟踪的影响;并通过列文伯格-马夸尔特方法,优化迭代过程,进一步提高自适应卡尔曼滤波算法的稳定性和收敛速度。仿真结果显示,利用新的算法对载噪比低至21dB-Hz的微弱GPS信号取得了良好的跟踪精度和极高的灵敏度。 Traditional tracking method is difficult to track weak GPS signals and has a high probability of losing lock.In order to solve the problem,a new tracking method was proposed.This work considered both the Doppler shift and code phase delay in the measurement model and adaptive Kalman filter to reduce the impact of noise.Also,Levenberg-Marquardt method was implemented for iterative process optimization to improve the stability and convergence rate of the adaptive Kalman filter algorithm.The simulation results show that the new method can maintain lock on a signal as weak as 21dB-Hz with high tracking accuracy and sensitivity.
出处 《计算机仿真》 CSCD 北大核心 2013年第8期88-91,共4页 Computer Simulation
关键词 全球定位系统 微弱信号处理 自适应卡尔曼滤波 列文伯格-马夸尔特方法 Global positioning system (GPS) Weak signal processing Adaptive Kalman filter Levenberg-Marquardt method
  • 相关文献

参考文献6

  • 1B Sinopoli, L Schenato, M Franceschetti, K Poolla, M I Jordan, S S Sastry. Kalman filtering with intermittent observations[J]. IEEE Transactions on Automatic Control, 2004,49 ( 9 ) : 1453 - 1464.
  • 2M L Psiaki, H Jung. Extended Kalman Filter Methods for Tracking Weak GPS Signals [ C ]. Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navi- gation. Portland OR: The Institute of Navigation, 2002:2539 - 2553.
  • 3周广宇,茅旭初.基于平方根卡尔曼滤波的微弱GPS信号跟踪方法[J].上海交通大学学报,2009,43(7):1149-1154. 被引量:6
  • 4E Shi. An improved real - time adaptive Kalman filter for low - cost integrated GPS/INS navigation [ C ]. 2012 International Con- ference on Measurement, Information and Control ( MIC ), 2012 : 1093 - 1098.
  • 5G Janos, C Andrei. A simplified adaptive Kalman filter algorithm for carrier recovery of M - QAM signals [ C ]. 17th International Conference on Methods and Models in Automation and Robotics ( MMAR), 2012 : 303 -307.
  • 6B M Wilamowski, H Yu. Improved Computation for Levenberg - Marquardt Training[ J ]. IEEE Transactions on Neural Networks, 2010,21 (6) :930 -937.

二级参考文献1

共引文献5

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部