摘要
本文构造了一类求解非线性时滞双曲型偏微分方程的紧致差分格式,获得了该差分格式的唯一可解性,收敛性和无条件稳定性,收敛阶为O(Γ~2+h^4),并进一步对时间方向进行Richardson外推,使得收敛阶达到了O(Γ~4+h^4).数值实验表明了算法的精度和有效性.
In this paper, a class of compact difference schemes are constructed to solve the nonlin- ear delay hyperbolic partial differential equations. The unique solvability, convergence and unconditional stability of the scheme are obtained. The convergence order is O(T2-h4). Furthermore, the Richardson extrapolation is applied to improve the temporal accuracy of the scheme, and a solution of order four in both temporal and spatial dimensions is obtained. Numerical example shows the accuracy and efficiency of the algorithms.
出处
《数值计算与计算机应用》
CSCD
2013年第3期167-176,共10页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金资助项目(11171125)
国家自然科学基金重大研究计划重点项目(9113000)
湖北省自然科学基金资助项目(2011CDB289)
国家留学基金项目(201306160037)