摘要
本文应用间断Galerkin(DG)方法求解带有间断系数的二维椭圆方程.针对扩散系数间断的特点,我们构造一种新的加权对称内惩罚方法.证明了相应双线性形式的连续性和强制性,并给出收敛性证明.数值算例表明我们的DG方法对于求解强间断系数问题十分有效.
This paper discusses the weighted discontinuous Galerkin method for elliptic problems with jump coefficients. For the two-dimensional linear elliptic equation with discontinuous coefficient, we propose a new weighted symmetric interior penalty method. The convergence analysis is presented based on the coercivity and continuity of bilinear form. Numerical examples demonstrate the validity of DG method for elliptic problems with strongly discon- tinuous coefficients.
出处
《数值计算与计算机应用》
CSCD
2013年第3期177-186,共10页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金(11171038
11271054)
中国工程物理研究院科学技术基金(2012B0202026
2010A0202010)
计算物理实验室基金
国防基础科研项目(B1520110011)资助
关键词
加权内惩罚间断方法
间断系数
椭圆方程
收敛性
Weighted interior penalty discontinuous Galerkin Method
Discontinuouscoefficient
Elliptic equation
Convergence