期刊文献+

用于微流控PCR的TEC温控系统结构优化设计 被引量:4

Optimization design of structure of TEC temperature control system for microfluidic PCR
下载PDF
导出
摘要 为了实现微流控聚合酶链式反应(PCR)的快速升降温,设计了一种基于半导体制冷片(TEC)的温度控制系统。通过对控温对象微流控PCR芯片的热分析,确定了TEC的参数,并且研究了TEC效率与散热性能之间的关系。在此基础上,设计了一种热管鳍片式高性能散热器,对其传热机理、传热路线及热阻进行了深入分析,建立了有限元模型,并对该热管散热器进行了实验测试。实验结果表明:该温控系统的平均升降温速率达到7.48℃/s,为实现微流控PCR系统的快速精确升降温控制奠定了良好基础。 In order to achieve rapid heating and cooling of microfluidic polymerase chain reaction(PCR),a temperature control system is designed based on thermoelectric cooler(TEC).Through thermal analysis on microfluidic PCR chip of temperature controlling object,parameters of TEC are determined,as well as the relationship between the cooling efficiency and heat radiation performance are studied.On this basis,a fin-type heat pipe high performance heat radiator is designed,its mechanism of heat transfer,the heat transfer routes,and thermal resistance are analyzed,finite element model(FEM) is set up,and experimental test on heat pipe heat radiator is carried out.The experimental results indicate that the average heating and cooling rate of temperature control system can achieve 7.48 ℃/s,and lay a good foundation for quickly and accurately heating and cooling temperature control of microfluidic PCR system.
出处 《传感器与微系统》 CSCD 北大核心 2013年第9期85-88,92,共5页 Transducer and Microsystem Technologies
基金 国家"863"计划资助项目(2011AA100704) 中国科学院合肥物质科学研究院院长基金资助项目(Y23J321121)
关键词 微流控 聚合酶链式反应 半导体制冷片 温度控制 散热器 microfluidic polymerase chain reaction(PCR) thermoelectric cooler(TEC) temperature control heat radiator
  • 相关文献

参考文献5

二级参考文献39

  • 1邱宪波,袁景淇.带前馈补偿的基因扩增反应高精度温控系统[J].仪器仪表学报,2005,26(z1):831-832. 被引量:11
  • 2Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing[ J]. Sensors and Actuators B ,1990,1 ( 1 ) :244 --248.
  • 3Wittwer C T, Garling D J. Rapid cycle DNA amplication:Time and temperature optimization [ J ]. Biotechniques, 1991,10 ( 1 ) : 76 --83.
  • 4Zhang C S,Xu J L,Ma W L,et al. PCR microfluidic devices for DNA amplification [ J ]. Biotechnology Advances, 2006,24 (3) : 243 --284.
  • 5Wang Z, Sekulovic A, Kutter J P, et al. Towards a portable micro- chip system with integrated thermal control and polymer waveguides for real-time PCR [ J ]. Electrophoresis, 2006, 27 : 5051-5058.
  • 6Kaigala G V, Hoang V N, Stickel A, et al. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis [ J ]. Analyst ,2008,133 (3) :331 -338.
  • 7Zhong R T, Pan X Y, Jiang L, et al. Simply and reliably integrating microheaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system [ J ]. Electrophoresis, 2009, 30 ( 8 ) : 1297 -1305.
  • 8Dinca M P, Marin G, Aherne M,et al. Fast and accurate temperature control of a PCR microsystem with a disposable reactor[ J]. Journal of Micromechanics and Microengineering, 2009,19 (6) : 960 -1017.
  • 9Lien K Y, Lee S H,Tsai T J, et al. A mierofluidie-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases [ J ]. Microfluidics and Nanofluidics,2009,7:795 --806.
  • 10Kim S J, Wang F, Burns M A, et al. Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber [ J ]. Analytical Chemistry, 2009, 81 ( 11 ) :4510 --4516.

共引文献35

同被引文献22

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部